Abstract:
The present invention relates to a process for producing a redispersible dispersion powder, to the redispersible dispersion powder obtainable by this process, to an aqueous dispersion obtainable by step (1) of this process, and to a building material composition comprising the redispersible dispersion powder and/or the aqueous dispersion, to the use of the redispersible dispersion powder in a building material composition and to the use of the aqueous dispersion for production of a redispersible dispersion powder.
Abstract:
The present invention relates to a method for producing a gypsum-containing foamed prefabricated building material and to a gypsum-containing foamed prefabricated building material.
Abstract:
The present invention provides the use of aqueous polymer dispersions comprising (a) at least two monomers M1 having a glass transition temperature ≥25° C., (b) at least two monomers M2 having a glass transition temperature
Abstract:
The present invention relates to the use of aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase and having a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being −30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X═O or NH, Y═H, alkali metal or NH4, to coat metal sheets.
Abstract:
The present invention provides an aqueous polyurethane (PU)-polyacrylate hybrid dispersion obtainable by free radical polymerization of at least one acrylate polymer (A1) in the presence of at least one polyurethane (P1), a process for preparing these aqueous polyurethane-polyacrylate hybrid dispersions, wherein said process comprises a) preparing an aqueous polyurethane dispersion and b) using the polyurethane dispersion thus prepared as raw material for the further synthesis of a polyacrylate dispersion, and the use of the hybrid dispersion thus obtained as binder in filled coating materials, particularly as a binder for flexible roof coatings.
Abstract:
The present invention relates to the use of liquid aqueous polymer compositions containing an aqueous polymer latex and at least one inorganic particulate material for providing flexible roof coatings. The present invention also relates to a method for providing flexible roof coatings, which comprises applying said liquid aqueous polymer compositions to a flat roof. The liquid aqueous polymer composition contain, a. an aqueous polymer latex, where the polymer in the polymer latex is made of polymerized monomers M, where the polymerized ethylenically unsaturated monomers M comprise a combination of) at least two different monoethylenically unsaturated, non-ionic monomers M1, whose homopolymers have a theoretical glass transition temperature Tg(th) of at least 25° C. and ii) at least two different monoethylenically unsaturated, non-ionic monomers M2, whose homopolymers have a theoretical glass transition temperature Tg(th) of at less than 25° C., where each of the monomers M1 and M2 have a solubility in deionized water of at most 50 g/L and where the total amount of monomers M1 and M2 contributes with at least 90% by weight to the total amount of the monomers M, and b. at least one inorganic particulate material selected from inorganic pigments, inorganic fillers and mixtures thereof.
Abstract:
The present invention relates to the use of aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase and having a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being −30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X═O or NH, Y═H, alkali metal or NH4, to coat metal sheets.