Abstract:
The present invention relates to an organic light-emitting diode which has a light-emitting layer C which contains at least one hole-conducting material CA and at least one phosphorescence emitter CB, mixtures containing at least one carbene complex in combination with at least one hole-conducting material or in combination with at least one phosphorescence emitter, and the use of mixtures containing at least one hole-conducting material and at least one phosphorescence emitter as a light-emitting layer in OLEDs for extending the lifetime of the light-emitting layer. The organic light-emitting diode according to the invention can have in at least one of the layers of the organic light-emitting diode, preferably in the hole-blocking layer and/or the electron-blocking layer and/or the light-emitting layer C, in addition to the hole-conducting material CA and the emitter CB, at least one compound selected from disilylcarbazoles, disilyldibenzofurans, disilyldibenzothiophenes, disilyldibenzophospholes, disilyldibenzothiophene-S-oxides and disilyldibenzothiophene-S,S-dioxides.
Abstract:
Disclosed is use of dibenzofurans and dibenzothiophenes which have at least one nitrogen-bonded five-membered heterocyclic ring as substituent as host, blocker, and /or charge transport material in organic electronics. Dibenzofurans and dibenzothiophenes which comprise at least one nitrogen-bonded five-membered heterocyclic ring and at least one carbazolyl radical as substituents, a preparation process thereof, and use of these compounds in organic electronics are also disclosed.
Abstract:
Silanes comprising phenothiazine S-oxide or phenothiazine S,S-dioxide groups, organic light-emitting diodes comprising the inventive silanes, a light-emitting layer comprising at least one inventive silane and at least one triplet emitter, a process for preparing the inventive silanes and the use of the inventive silanes in organic light-emitting diodes, preferably as matrix materials and/or blocker materials for triplet emitters.
Abstract:
The present invention relates to the use of triazole derivatives selected from the group consisting of triazolopyrimidine derivatives and triazolouracil derivatives in organic light-emitting diodes (OLEDs), an OLED comprising at least one of the organic triazole derivatives mentioned, a light-emitting layer comprising at least one of the triazole derivatives mentioned, an OLED comprising the light-emitting layer of the invention, a device comprising an OLED according to the invention and also specific novel triazole derivatives.
Abstract:
The present invention relates to the use of transition metal-carbene complexes in organic light-emitting diodes (OLEDs), to a light-emitting layer, to a blocking layer for electrons or excitons, or to a blocking layer for holes, each comprising these transition metal-carbene complexes, to OLEDs comprising these transition metal-carbene complexes, to devices which comprise an inventive OLED, and to transition metal-carbene complexes.
Abstract:
The present invention relates to metal-carbene complexes comprising a central atom selected from iridium and platinum, and specific azabenzimidazolocarbeneligands, to OLEDs (Organic Light Emitting Diode, OLED)which comprise such complexes, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED,to the use of such a metal-carbene complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge or exciton blocker.
Abstract:
An organic light-emitting diode, organic solar cell or switching element comprising at least one substituted carbazole derivative of the general formula (I), (II) or (III) in which X is NR4, O, S or PR4; Y is NR5, O, S or PR5; where at least one of the symbols X and Y is NR4 or NR5; R1 and R3 are each independently substituted or unsubstituted C1-C20-alkyl, substituted or unsubstituted C6-C30-aryl, substituted or unsubstituted heteroaryl having 5 to 30 ring atoms or a substituent with donor or acceptor action selected from the group consisting of C1-C20-alkoxy, C6-C30-aryloxy, C1-C20-alkylthio, C6-C30-arylthio, SiR6R7R8, halogen radicals, halogenated C1-C20-alkyl radicals, carbonyl (-CO(R6)), carbonylthio (- C = O (SR6)), carbonyloxy (- C = O(OR6)), oxycarbonyl (- OC = O(R6)), thiocarbonyl (- SC = O(R6)), amino (-NR6R7), OH, pseudohalogen radicals, amido (- C = O (NR6)), -NR6C = O (R7), phosphonate (- P(O) (OR6)2), phosphate (-OP(O) (OR6)2), phosphine (-PR6R7), phosphine oxide (-P(0)R6 2), sulfate (-OS(0)2OR6), sulfoxide (-S(O)R6), sulfonate (-S(O)2OR6), sulfonyl (-S(O)2R6), sulfonamide (-S(O)2NR6R7), N02, boronic esters (-OB(OR6)2), imino (-C = NR6R7), borane radicals, stannane radicals, hydrazine radicals, hydrazone radicals, oxime radicals, nitroso groups, diazo groups, vinyl groups, sulfoximines, alanes, germanes, boroximes and borazines;