Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB , a suitable sterile field sphere can be created. The terminal ends of the multiple components remain withing the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.
Abstract:
A monitor for an extracorporeal therapy access site is disclosed. The monitor includes a bandage atop or adjacent the access site and a sensor for monitoring the bandage. The bandage includes a layer of polymer that expands when wetted with blood. The expansion causes a break in continuity of the sensor, or in an alternate embodiment, causes a sensor to cease detecting a target. When the break occurs, the control circuit monitoring the bandage sends a signal that a break has occurred, and a remote monitor then takes appropriate action, such as ceasing therapy, sending an alert, or sounding an alarm. In another embodiment, connecting wires in a continuity circuit are held apart by a polymer that dissolves when contacted by blood. If a leak occurs and a small portion of the polymer dissolves, the wires make contact, thus detecting a blood leak.
Abstract:
A vacuum demand valve (10) is capable of delivering a flowable material. The valve (10) has a housing (11) having a proximal end (14), a distal end (16), an intermediate segment (18) therebetween defining a passageway (24) wherein the flowable substance can flow from the proximal end (14) to the distal end (16). The housing (11) can be tubing. A valve member (20) is located along the intermediate segment (18). The valve member (20) has a closed condition wherein the flowable material from the proximal end (14) to the distal end (16) is stopped and an open condition wherein the flow of the flowable material from the proximal end (14) to the distal end (16) is unstopped. The valve member (20) is biased in the closed condition and is responsive to a partial vacuum provided by the user through the passageway (24) for placing the valve member (20) in the open condition.
Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB(TM), a suitable sterile field sphere can be created. The terminal ends of the multiple components remain within the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.
Abstract:
A vacuum demand valve for delivering a flowable material is disclosed. The valve has a housing having a proximal end, a distal end, an intermediate segment therebetween defining a passageway wherein the flowable substance can flow from the proximal end to the distal end. The housing can be a tubing. A valve member is located along the intermediate segment. The valve member has a closed condition wherein the flow of the flowable material from the proximal end to the distal end is stopped and an open condition wherein the flow of the flowable material from the proximal end to the distal end is unstopped. The valve member is biased in the closed condition and is responsive to a partial vacuum provided by the user through the passageway for placing the valve member in the open condition.
Abstract:
A method for sterile filling a pre-sterilized container having a filling port with a bulk sterile fluid comprises the steps of, establishing an active sterile field, introducing the filling port of the pre-sterilized container into the active sterile field, transferring an aliquot of the bulk sterile fluid from a supply container to the pre-sterilized container through the filling port while in the active sterile field and removing the filling port of the pre-sterilized container from the active sterile field.
Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB.TM., a suitable sterile field sphere can be created. The terminal ends of the multiple components remain withing the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.
Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB(TM), a suitable sterile field sphere can be created. The terminal ends of the multiple components remain within the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.
Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB(TM), a suitable sterile field sphere can be created. The terminal ends of the multiple components remain within the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.
Abstract:
The connection, assembly, or fill of two or more pre-sterilized components having at least one terminal end each for attachment to another component, and an apparatus for performing such a connection, while maintaining the sterility of the components is disclosed. The resulting connection is made permanent by bonding the contacting components together using either a solvent bonding technique, a radio frequency sealer, a heat sealer, or any other suitable process. The connection is preferably made within an active sterile field. Using a low-voltage electron beam instrument, such as the MIN-EB(TM), a suitable sterile field sphere can be created. The terminal ends of the multiple components remain within the sterile field sphere until the possibility of contamination within the sealed components is significantly reduced to industry acceptable standards.