Abstract:
Disclosed herein, inter alia, are Inverse Linkage Oligonucleotides ("ILO") useful in enzymatic process. Particularly preferred ILOs are amenable to enzymatic elongation from either, or most preferably, both termini. In a particularly preferred embodiment, each terminus of an ILO has an enzymatically functional 3' group. Accordingly, under appropriate conditions and in the presence of, e.g., dNTPs, enzyme, sample DNA, and ILO comprising a first region complementary to a first region of the sample DNA and a second region complementary to a second, different region of the sample DNA, exponential amplification of the sample DNA can be effectuated.
Abstract:
Disclosed herein, inter alia, are Inverse Linkage Oligonucleotides ('ILO') useful in enzymatic process. Particularly preferred ILOs are amenable to enzymatic elongation from either, or most preferably, both termini. In a particularly preferred embodiment, each terminus of an ILO has an enzymatically functional 3' group. Accordingly, under appropriate conditions and in the presence of, e.g., dNTPs, enzyme, sample DNA, and ILO comprising a first region complementary to a first region of the sample DNA and a second region complementary to a second, different region of the sample DNA, exponential amplification of the sample DNA can be effectuated.
Abstract:
Inverse Linkage Oligonucleotides ("ILO") useful in enzymatic process are disclosed. Particularly preferred ILOs are amenable to enzymatic elongation from either, or most preferably, both termini. In a particularly preferred embodiment, each terminus of an ILO has an enzymatically functional 3' group. Accordingly, under appropriate conditions and in the presence of, e.g., dNTPs, enzyme, sample DNA, and ILO comprising a first region complementary to a first region of the sample DNA and a second region complementary to a second, different region of the sample DNA, exponential amplification of the sample DNA can be effectuated.
Abstract:
An electrophoretic system employing a capillary with at least one end having an electrically conductive coating or layer directly thereon. In order to introduce a plug of sample from a small amount of the sample in a vial, the conductive tip is submersed into the small amount of sample and an electric field is applied at the end by applying the high voltage to the tip in order to electrokinetically inject a plug of the sample. The conductive tip may also be used as a terminal for completing the circuit for applying the high voltage across the capillary column for electrophoresis. The separated components may be collected on a surface or small amount of buffer to reduce sample dilution or mixing of one sample component with a different sample component from the electrophoretic process.