Abstract:
Provided in the embodiments of the present disclosure are a microlens structure, a manufacturing method therefor, and the related use thereof. The microlens structure comprises: a base substrate; a plurality of first microlenses, which are located on the base substrate and arranged at intervals; and a plurality of second microlenses, which are located on the base substrate and are located in gaps between the first microlenses, wherein edges of at least part of the second microlenses overlap edges of the corresponding first microlenses.
Abstract:
A microlens array substrate (200) and a preparation method therefor, and a display device. The microlens array substrate (200) comprises: a base; a microlens film layer disposed on a side of the base and comprising at least one microlens array, the microlens array comprises a plurality of microlenses and a spacer portion between adjacent microlenses; a barrier layer disposed on a side of the microlens film layer away from the base, an orthographic projection of at least part of the barrier layer on the base is overlapped with an orthographic projection of the microlenses on the base; a light shielding layer disposed on a side of the microlens film layer away from the base and comprising at least one light shielding pattern, an orthographic projection of the at least one light shielding pattern on the base is overlapped with an orthographic projection of the spacer portion on the base.
Abstract:
A micro-nano channel structure, a method for manufacturing the micro-nano channel structure, a sensor, a method for manufacturing the sensor, and a microfluidic device are provided by the embodiments of the present disclosure. The micro-nano channel structure includes: a base substrate; a base layer, on the base substrate and including a plurality of protrusions; and a channel wall layer, on a side of the plurality of the protrusions away from the base substrate, and the channel wall layer has a micro-nano channel; a recessed portion is provided between adjacent protrusions of the plurality of the protrusions, and an orthographic projection of the micro-nano channel on the base substrate is located within an orthographic projection of the recessed portion on the base substrate.
Abstract:
The present disclosure provides a display panel and a manufacturing method thereof, a driving method and a display device. The display panel includes: a base substrate and a thin film transistor on a surface of the base substrate. The thin film transistor includes: a gate, and a source and a drain arranged along a first direction, and a first passivation layer covering the gate, the source and the drain. a space region in which liquid crystal molecules are filled is formed in the first passivation layer. The space region is between the source and the drain. The source and the drain are configured to control rotation of the liquid crystal molecules.
Abstract:
A double-sided display panel and a double-sided display device are provided. The double-sided display panel includes a first substrate, a second substrate, a pair of electrodes, and a color display unit, an isolating reflection layer and a black-and-white display unit which are sequentially provided between the first substrate and the second substrate, wherein the color display unit includes an electrochromic material; the black-and-white display unit includes an electrolytic solution, and black particles and white particles having opposite charges dispersed in the electrolytic solution; the isolating reflection layer has properties of allowing ions in the electrolytic solution to permeation and reflecting light. The double-sided display panel has a simple structure and is easy for production, and displays on both sides do not affect each other and bistable display can be achieved.
Abstract:
The present disclosure provides a transparent liquid crystal display panel and a transparent liquid crystal display. The transparent liquid crystal display panel includes a backlight module, a color filter substrate and a TFT array substrate which are cell-assembled. Liquid crystal is filled between the color filter substrate and the TFT array substrate. Each pixel unit of the color filter substrate includes a sub-pixel unit and a transparent pixel unit. A region on the TFT array substrate that corresponds to the transparent pixel unit is transparent. A region between the color filter substrate and the TFT array substrate that corresponds to the transparent pixel unit is provided with a transparent resin spacer. A region in the backlight module that corresponds to the transparent pixel unit is a transparent region.
Abstract:
A micro-nano channel structure, a method for manufacturing the micro-nano channel structure, a sensor, a method for manufacturing the sensor, and a microfluidic device are provided. The micro-nano channel structure includes: a base substrate; a base layer, on the base substrate and including a plurality of protrusions; a channel wall layer, on a side of the plurality of the protrusions away from the base substrate, the channel wall layer has a micro-nano channel; a recessed portion is provided between adjacent protrusions of the plurality of the protrusions, an orthographic projection of the micro-nano channel on the base substrate is located within an orthographic projection of the recessed portion on the base substrate. The micro-nano channels have a high resolution or an ultra-high resolution, and have different sizes and shapes.
Abstract:
Disclosed in embodiments of the present disclosure are a lens array and a manufacturing method thereof. The manufacturing method for the lens array includes the following steps: depositing a first film layer on a first substrate, and manufacturing and forming a tapered structure array through a patterning process; and depositing a second film layer on the tapered structure array, thereby covering a top of a tapered structure, so as to form a lenticular structure array, wherein a top of a lenticular structure is a cambered surface. The lens array is manufactured by the above manufacturing method, wherein the lens array includes a plurality of lenses arranged in an array, and the arch heights of the plurality of lenses are the same and larger than or equal to a set value.
Abstract:
A biochip and a method for manufacturing the same are provided. The biochip includes: a guide layer; a channel layer on the guide layer, wherein the channel layer has therein a plurality of first channels extending in a first direction; a plurality of second channels extending in a second direction, wherein each of the plurality of second channels is in communication with the plurality of first channels, the plurality of second channels are in a layer where the channel layer is located, or in a layer where the channel layer and the guide layer are located; an encapsulation cover plate on a side of the channel layer distal to the guide layer; and a driving unit configured to drive biomolecules to move.
Abstract:
An embodiment of the present disclosure provides an array substrate and a display panel. The array substrate includes a base substrate, organic electroluminescence components arranged on the base substrate in an array, and a photoelectric conversion component corresponding to each of the organic electroluminescence components. A luminescent spectrum of each organic electroluminescence component comprises a first waveband and a second waveband. The first waveband is determined by an emission peak of the luminescent spectrum, and is used to determine brightness and tone purity of light emitted by the organic electroluminescence component. The photoelectric conversion component is at least used to convert light of the second waveband emitted by a corresponding organic electroluminescence component into electric energy.