Abstract:
New anti-reflective or fill compositions having improved flow properties are provided. The compositions comprise a styrene-allyl alcohol polymer and preferably at least one other polymer (e.g., cellulosic polymers) in addition to the styrene-allyl alcohol polymer. The inventive compositions can be used to protect contact or via holes from degradation during subsequent etching in the dual damascene process. The inventive compositions can also be applied to substrates ( e.g., silicon wafers) to form anti-reflective coating layers having high etch rates which minimize or prevent reflection during subsequent photoresist exposure and developing.
Abstract:
New compositions and methods of using those compositions as protective layers during the production of semiconductor and MEMS devices are provided. The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to form layers that protect a substrate during acid etching and other processing and handling. The protective layer can be photosensitive or non-photosensitive, and can be used with or without a primer layer beneath the protective layer. Preferred primer layers comprise a basic polymer in a solvent system.
Abstract:
A high-temperature-stable spin-on-carbon ("SOC") material that fills topography features on a substrate while planarizing the surface in a one-step, thin layer coating process is provided. The material comprises low molecular weight polyimides or diimides that are pre-imidized in solution rather than on the wafer. The SOC layers can survive harsh CVD conditions and are also SCI resistant, especially on TiN and SiOx surfaces.
Abstract:
Methods of preparing poly(cyanocinnamate)s are provided, with those involving mild conditions and resulting in a soluble polymer that is stable at room temperature and can be coated onto microelectronic substrates. The polymer includes at least one bis(cyanoacetate) monomer and at least one aromatic dialdehyde monomer. The polymer exhibits good thermal and structural properties and high absorbance in the UV range.
Abstract:
New anti-reflective or fill compositions having improved flow properties are provided. The compositions comprise a styrene-allyl alcohol polymer and preferably at least one other polymer (e.g., cellulosic polymers) in addition to the styrene-allyl alcohol polymer. The inventive compositions can be used to protect contact or via holes from degradation during subsequent etching in the dual damascene process. The inventive compositions can also be applied to substrates (e.g., silicon wafers) to form anti-reflective coating layers having high etch rates which minimize or prevent reflection during subsequent photoresist exposure and developing.
Abstract:
The invention broadly relates to cyclic olefin polymer bonding compositions and release compositions, to be used independently or together, that enable thin wafer handling during microelectronics manufacturing, especially during a full-wafer mechanical debonding process. The release compositions comprise compositions made from siloxane polymers and copolymers blended in a polar solvent, and that are stable at room temperature for longer than one month. The cyclic olefin polymer bonding compositions provide high thermal stability, can be bonded to fully-treated carrier wafers, can be mechanically or laser debonded after high-temperature heat treatment, and are easily removed with an industrially-acceptable solvent. Wafers bonded according to the invention demonstrate lower overall post-grind stack TTV compared to other commercial bonding materials and can survive 200°C PECVD processing.
Abstract:
This invention is related to compositions that prepare substrate surfaces to enable temporary wafer bonding during microelectronics manufacturing, especially using a zonal bonding process. This invention, which comprises compositions made from fluorinated silanes blended in a polar solvent, can be used to form surface coatings or treatments having a high contact angle with water (>85°). The resulting silane solutions are stable at room temperature for longer than one month.
Abstract:
New protective coating layers for use in wet etch processes during the production of semiconductor and MEMS devices are provided. The layers include a primer layer, a first protective layer, and an optional second protective layer. The primer layer preferably comprises an organo silane compound in a solvent system. The first protective layer includes thermoplastic copolymers prepared from styrene, acrylonitrile, and compatible compounds such as monomers, oligomers, and polymers comprising epoxy groups; poly(styrene-co-allyl alcohol); and mixtures thereof. The second protective layer comprises a highly halogenated polymer such as a chlorinated polymer which may or may not be crosslinked upon heating.
Title translation:CYCLISCHE OLEFINPOLYMERZUSAMMENSETZUNGEN UND POLYSILOXANFREISETZUNGSSCHICHTEN ZUR VERWENDUNG IN VERFAHREN ZUMVORÜBERGEHENDENWAFERBONDEN
Abstract:
The invention broadly relates to cyclic olefin polymer bonding compositions and release compositions, to be used independently or together, that enable thin wafer handling during microelectronics manufacturing, especially during a full-wafer mechanical debonding process. The release compositions comprise compositions made from siloxane polymers and copolymers blended in a polar solvent, and that are stable at room temperature for longer than one month. The cyclic olefin polymer bonding compositions provide high thermal stability, can be bonded to fully-treated carrier wafers, can be mechanically or laser debonded after high-temperature heat treatment, and are easily removed with an industrially-acceptable solvent. Wafers bonded according to the invention demonstrate lower overall post-grind stack TTV compared to other commercial bonding materials and can survive 200°C PECVD processing.