Abstract:
A micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same allow for a large range of angular motion for a center mirror component. The large range of angular motion for a center mirror component is dictated simply by a thickness of a substrate used or a thickness of a thick film used in making a support structure to support the center mirror component. The MEMS mirror device and methods for fabricating the same allow a large number mirror devices to be fabricated on a substrate. The MEMS mirror device includes a substrate. Electrodes are formed supported by the substrate. A support structure is formed adjacent to the electrodes. A hinge pattern and a mirror pattern having a center mirror component are formed such that the support structure supports the hinge pattern and mirror pattern. The support structure also supports the hinge pattern and mirror pattern such that a bottom surface of the center mirror component in a stationary non-rotating position is capable of exceeding a height of 50 mum above the electrodes.
Abstract:
A micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same allow for a large range of angular motion for a center mirror component. The large range of angular motion for a center mirror component is dictated simply by a thickness of a substrate used or a thickness of a thick film used in making a support structure to support the center mirror component. The MEMS mirror device and methods for fabricating the same allow a large number mirror devices to be fabricated on a substrate. The MEMS mirror device includes a substrate. Electrodes are formed supported by the substrate. A support structure is formed adjacent to the electrodes. A hinge pattern and a mirror pattern having a center mirror component are formed such that the support structure supports the hinge pattern and mirror pattern. The support structure also supports the hinge pattern and mirror pattern such that a bottom surface of the center mirror component in a stationary non-rotating position is capable of exceeding a height of 50 mu m above the electrodes.
Abstract:
An optical switch is described having mirrors that are located over an area having an approximate oval shape. Each mirror is pivotable about a first axis and about a second axis transverse to the first axis. Because of the construction and assembly of each mirror, pivoting about the first axis is more limited than pivoting about the second axis. The area over which the mirrors are located is designed to accommodate pivoting about the first axis and about the second axis such that the area has a length and a width wherein the length is much more than the width. In addition, pivoting about the first axis limits pivoting about the second axis and pivoting about the second axis limits pivoting about the first axis.