Abstract:
Analytical systems and methods that use a modular interface structure (600) for providing an interface between a sample substrate (630) and an analytical unit (610) where the analytical unit (610) has a particular interface arrangement for implementing various analytical and control functions. Using a number of variants for each module of the modular interface structure (600) advantageously provides cost effective and efficient ways to perform numerous tests using a particular substrate or class of substrates with a particular analytical and control systems interface arrangement. Improved optical illumination and detection system for simultaneously analyzing reactions or conditions in multiple parallel microchannels (622) are also provided.
Abstract:
Methods and devices (Figure 4) for inducing high bulk hydrodynamic resistance (408) and/or inducing low electrical resistance in microscale systems (400, 412) including bulk viscosity enhancers (via 402), disinfectants, and electrolytes. High bulk hydrodynamic resistance is optionally utilized to regulate the effects of spontaneous injection and dispersion.
Abstract:
Methods and systems for designing optimized fluidic channel networks for performing different analytical operations, which include the steps of selecting a driving force, identifying at least a first reaction parameter, and designing the channel network by determining channel lengths and cross-sectional dimensions that are optimized for the reaction requirements in view of the selected driving force. Preferred methods are used to design integrated microscale fluidic systems.
Abstract:
Electrokinetic devices having a computer for correcting for electrokinetic effects are provided. Methods of correcting for electrokinetic effects by establishing the velocity of reactants and products in a reaction in electrokinetic microfluidic devices are also provided. These microfluidic devices can have substrates with channels, depressions, and/or wells for moving, mixing and monitoring precise amounts of analyte fluids.
Abstract:
Methods, apparatus and systems are provided for introducing large numbers of different materials into a microfluidic analytical device rapidly, efficiently and reproducibly. In particular, improved integrated pipettor chip configurations, e.g. sippers or electropipettors, are described which are capable of sampling extremely small amounts of material for which analysis is desired, transporting material into a microfluidic analytical channel network, and performing the desired analysis on the material.
Abstract:
Analytical systems and methods that use a modular interface structure (600) for providing an interface between a sample substrate (630) and an analytical unit (610) where the analytical unit (610) has a particular interface arrangement for implementing various analytical and control functions. Using a number of variants for each module of the modular interface structure (600) advantageously provides cost effective and efficient ways to perform numerous tests using a particular substrate or class of substrates with a particular analytical and control systems interface arrangement. Improved optical illumination and detection system for simultaneously analyzing reactions or conditions in multiple parallel microchannels (622) are also provided.
Abstract:
Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
Abstract:
Arrays of flowable or fixed particle sets are used in microfluidic systems for performing assays and modifying hydrodynamic flow. Also provided are assays utilizing flowable or fixed particle sets within a microfluidic system, as well as kits, apparatus and integrated systems comprising arrays and array members. The application particularly focusses on methods of performing a plurality of chemical reactions, for instance nucleic acid synthesis and sequencing reactions, in said microfluidic devices.
Abstract:
Arrays of flowable or fixed particle sets are used in microfluidic systems for performing assays and modifying hydrodynamic flow. Also provided are assays utilizing flowable or fixed particle sets within a microfluidic system, as well as kits, apparatus and integrated systems comprising arrays and array members. The application particularly focusses on methods of performing a plurality of chemical reactions, for instance nucleic acid synthesis and sequencing reactions, in said microfluidic devices.