Abstract:
A display (50) with enhanced image contrast contains an image-producing component (60) and a set of shutter strips (80). The image-producing component, typically a flat-panel device, has multiple imaging lines that provide light to produce an image. Each shutter strip is situated in front of one or more associated imaging lines. By appropriately switching the shutter strips between light-absorptive and light-transmissive states, the image contrast is enhanced. The shutter strips are typically implemented with a liquid-crystal display structure. The switching of the shutter strips is typically performed with a control component (52/76) which utilizes light to control the shutter switching and which is synchronized to signals (90 or/and 100) that control the imaging lines.
Abstract:
A field emission display (700) having an improved operational life. In one embodiment, the field emission display (700) comprises a plurality of row lines (230), a plurality of column lines (250), and a plurality of electron emissive elements (40) disposed at intersections of the plurality of row lines (230) and column lines (250), a column driver circuit (740) and a row driver circuit (720). The column driver circuit (740) is coupled to drive column voltage signals over the plurality of column lines (250); and the row driver circuit (720) is coupled to activate and deactivate the plurality of row lines (230) with row voltage signals. According to the present invention, operation life of the field emission display is extended when the electron emissive elements are intermittently reverse-biased by the column voltage signals and the row voltage signals. In another embodiment, the row driver circuit is responsive to a SLEEP signal (770). The row driver circuit (720), upon receiving the SLEEP signal (770), drives a sleep-mode voltage over the row lines (230) to reverse-bias the electron emissive elements.
Abstract:
A field emission display (700) having an improved operational life. In one embodiment, the field emission display (700) comprises a plurality of row lines (230), a plurality of column lines (250), and a plurality of electron emissive elements (40) disposed at intersections of the plurality of row lines (230) and column lines (250), a column driver circuit (740) and a row driver circuit (720). The column driver circuit (740) is coupled to drive column voltage signals over the plurality of column lines (250); and the row driver circuit (720) is coupled to activate and deactivate the plurality of row lines (230) with row voltage signals. According to the present invention, operation life of the field emission display is extended when the electron emissive elements are intermittently reverse-biased by the column voltage signals and the row voltage signals. In another embodiment, the row driver circuit is responsive to a SLEEP signal (770). The row driver circuit (720), upon receiving the SLEEP signal (770), drives a sleep-mode voltage over the row lines (230) to reverse-bias the electron emissive elements.
Abstract:
A flat-panel device is fabricated by a process in which a pair of plate structures (40 and 42) are sealed along their interior surfaces (40A and 42B) to opposite edges (44A and 44B) of an outer wall (44) to form a compartment. Subsequently, exterior support structure (64) is attached to the exterior surface of one of the plate structures (40) to significantly increase resistance of the compartment to bending. Exterior support structure (66) is normally likewise attached to the exterior surface of the other plate structure (42) after the sealing operation. The compartment is then typically pumped down to a high vacuum through a suitable pump-out port (46) and closed. By providing the exterior support structure at such a relatively late stage in the fabrication process, the need for using spacers to support the device against external forces is eliminated or substantially reduced while simultaneously avoiding severe fabrication difficulties that arise in attaching the exterior support structure before the sealing operation.
Abstract:
A display (50) with enhanced image contrast contains an image-producing component (60) and a set of shutter strips (80). The image-producing component, typically a flat-panel device, has multiple imaging lines that provide light to produce an image. Each shutter strip is situated in front of one or more associated imaging lines. By appropriately switching the shutter strips between light-absorptive and light-transmissive states, the image contrast is enhanced. The shutter strips are typically implemented with a liquid-crystal display structure. The switching of the shutter strips is typically performed with a control component (52/76) which utilizes light to control the shutter switching and which is synchronized to signals (90 or/and 100) that control the imaging lines.