Abstract:
Method for compensating for brightness variations in a field emission device (100a). In one embodiment, a method and system are described for measuring the relative brightness of rows of a field emission display (FED) device (100a), storing information representing the measured brightness into a correction table and using the correction table to provide uniform row brightness in the display by adjusting row voltages and/or row on-time periods. A special measurement process is described for providing accurate current measurements on the rows. This embodiment compensates for brightness variations of the rows, e.g., for rows near the spacer walls (30). In another embodiment, a periodic signal, e.g., a high frequency noise signal (340), is added to the row on-time pulse in order to camouflage brightness variations in the rows near the spacer walls (30). In another embodiment, the area under the row on-time pulse is adjusted to provide row-by-row brightness compensation based on correction values stored in a memory resident correction table (60). In another embodiment, the brightness of each row is measured and compiled into a data profile for the FED. The data profile is used to control cathode burn-in processes so that brightness variations are corrected by physically altering the characteristics of the emitters of the rows.
Abstract:
A multi-level matrix structure (100) for retaining a support structure within a flat panel display device. In one embodiment, the multi-level matrix structure (100) is comprised of first parallel ridges (102). The multi-level matrix structure (100) further includes second parallel ridges (104). The second parallel ridges (104) are oriented substantially orthogonally with respect to the first parallel ridges (102). In this embodiment, the second parallel ridges (104) have a height which is greater than the height of the first parallel ridges (102). Furthermore, in this embodiment, the second plurality of parallel spaced apart ridges (104) include contact portions (106) for retaining a support structure at a desired location within a flat panel display device. Hence, when a support structure is inserted between at least two of the contact portions (106) of the multi-level support structure (100), the support structure is retained in place, at a desired location within the flat panel display device, by the contact portions (106).
Abstract:
A structure and method for forming a column electrode for a field emission display device wherein the column electrode (702) is disposed beneath the field emitters and the row electrode. In one embodiment, the present invention comprises depositing a resistor layer (706) over portions of a column electrode (702). Next, an inter-metal dielectric layer (708) is deposited over the column electrode. In the present embodiment, the inter-metal dielectric layer (708) is deposited over portions of the resistor layer (706) and over pad areas (704a, 704b) of the column electrode (702). After the deposition of the inter-metal dielectric layer (708), the column electrode (702) is subjected to an anodization process such that the exposed regions of the column electrode (702) are anodized. In so doing, the present invention provides a column electrode structure (702) which is resistant to column to row electrode shorts and which is protected from subsequent processing steps.
Abstract:
A field emission display (700) having an improved operational life. In one embodiment, the field emission display (700) comprises a plurality of row lines (230), a plurality of column lines (250), and a plurality of electron emissive elements (40) disposed at intersections of the plurality of row lines (230) and column lines (250), a column driver circuit (740) and a row driver circuit (720). The column driver circuit (740) is coupled to drive column voltage signals over the plurality of column lines (250); and the row driver circuit (720) is coupled to activate and deactivate the plurality of row lines (230) with row voltage signals. According to the present invention, operation life of the field emission display is extended when the electron emissive elements are intermittently reverse-biased by the column voltage signals and the row voltage signals. In another embodiment, the row driver circuit is responsive to a SLEEP signal (770). The row driver circuit (720), upon receiving the SLEEP signal (770), drives a sleep-mode voltage over the row lines (230) to reverse-bias the electron emissive elements.
Abstract:
A flat panel display and a method for forming a flat panel display. In one embodiment, the flat panel display includes a cathodic structure which is formed within an active area on a backplate (100). The cathodic structure includes a emitter electrode metal (102) composed of strips of aluminum overlain by a layer of cladding material.
Abstract:
Multiple procedures are presented for removing contaminant material (12) from electron-emissive elements (10) of an electron-emitting device (30). One procedure involves converting the contaminant material into gaseous products (14), typically by operating the electron-emissive elements, that move away from the electron-emissive elements. Another procedure entails converting the contaminant material into further material (16) and removing the further material. An additional procedure involves forming surface coatings (18 or 20) over the electron-emissive elements. The contaminant material is then removed directly from the surface coatings or by removing at least part of each surface coating.
Abstract:
A flat panel display and a method for forming a flat panel display. In one embodiment, the flat panel display includes a cathodic structure which is formed within an active area on a backplate (100). The cathodic structure includes a emitter electrode metal (102) composed of strips of aluminum overlain by a layer of cladding material.
Abstract:
A liquid chemical formulation suitable for making a thin solid polycarbonate film contains polycarbonate material and a liquid typically capable of dissolving the polycarbonate to a concentration of at least 1 %. The liquid also typically has a boiling point of at least 80 DEG C. Examples of the liquid include pyridine, a ring-substituted pyridine derivative, pyrrole, a ring-substituted pyrrole derivative, pyrrolidine, a pyrrolidine derivative, chlorobenzene, and cyclohexanone. A liquid film (36A) of the liquid chemical formulation is formed over a substructure (30) and processed to remove the liquid. In subsequent steps, the resultant solid polycarbonate film can serve as a track layer through which charged particles (70) are passed to form charged-particle tracks (72). Apertures (74) are created through the track layer by a process that entails etching along the tracks. The aperture-containing polycarbonate track layer is typically employed in fabricating a gated electron-emitting device.
Abstract:
The intensity at which electrons emitted by a first plate structure (10) in a slat-panel display strike a second plate structure (12) for causing it to emit light is controlled so as to reduce image degradation that could otherwise arise from undesired electron-trajectory changes caused by effects such as the presence of a spacer system (14) between the plate structures. An electron-emissive region (20) in the first plate structure typically contains multiple laterally separated electron-emissive portions (201 and 202) for selectively emitting electrons. An electron-focusing system in the first plate structure has corresponding focus openings (40p1 and 40p2) through which electrons emitted by the electron-emissive portions respectively pass. Upon being struck by the so-emitted electrons, a light-emissive region (22) in the second plate structure emits light to produce at least part of a dot of the display's image.
Abstract:
An electron-emitting device contains a vertical emitter resistor patterned into multiple laterally separated sections (34, 34V, 46, or 46V) situated between the electron-emissive elements (40), on one hand, and emitter electrodes (32), on the other hand. Sections of the resistor are spaced apart along each emitter electrode. The resistor can be formed in a manner self aligned to control electrodes (38 or 52A/58B) of the device or with a separate resistor mask.