Abstract:
A window framework for mounting a glass pane in an aperture of a panel. The window framework includes an exterior frame having a peripheral wall shaped for fitting with and extending into the aperture. The peripheral wall extends between exterior and interior sides of the panel, and is provided along the periphery thereof with an abutment member adjacent to the exterior side. The wall is also provided with stop means adjacent to the interior side. The window framework also includes removable locking means having a flexible element lockable with the stop means when the locking means is in a locking position. The locking means is also provided with an element for holding the glass pane in position with the aid of the abutment member when the locking means is in the locking position. The window framework further includes a securing means for securing the exterior frame to the panel in the aperture. A method for mounting a glass pane in an aperture of a panel is also provided.
Abstract:
A ratchet-like assembly for winding a counterbalancing mechanism of a door. The ratchet-like assembly includes at least one plate, at least one ridge, an actuator, and at least one pawling element. Each plate is operatively mounted onto a fixed structure and includes an orifice through which extends a shaft of the counterbalancing mechanism and about which the shaft is rotatable along opposite first and second directions of rotation. Each ridge is provided about an outer edge of the corresponding orifice. The actuator is operatively connected to each plate and is operable between a locked configuration and an unlocked configuration. Each pawling element is mounted onto the actuator and is positioned within a corresponding ridge, adjacent to the shaft. Each ridge and each corresponding pawling element are shaped and sized so that when the actuator is operated in the locked configuration, each pawling element is operatively pressed against the shaft and its corresponding ridge for preventing the shaft from rotating along the first direction of rotation, and when the actuator is operated in the unlocked configuration, each pawling element is operatively urged away from the shaft and its corresponding ridge for allowing the shaft to rotate along both the first and second directions of rotation. The present ratchet-like assembly enables to easily install and calibrate counterbalancing mechanisms of various types of door assemblies where a torque must be applied and maintained onto a given shaft of the door assembly.
Abstract:
A device for bending an extremity of a torsional spring. The device includes a base plate; at least one flange projecting from the base plate; at least one bulge projecting from the at least one flange; a lever arm pivotally mounted onto the at least one flange about a first pivot axis; and at least one cam pivotally mounted onto the lever arm about a second pivot axis. The lever arm is operable between first and second positions and each cam has a contact surface being positioned for operatively cooperating with a corresponding bulge. Prior to the bending operation, the extremity of the torsional spring is inserted between a given bulge and the contact surface of a corresponding cam when the lever arm is in the first position. In operation, the extremity of the spring is bent about the given bulge by the contact surface of the corresponding cam when the contact surface is urged towards the bulge and forced about the same over the extremity of the spring as the lever arm is operated into the second position. The device enables an easier, simpler and more cost effective way of bending an extremity of a torsional spring, without the use of heat for bending the spring tail, and may be easily transportable from one site to another. Moreover, the device can be used for bending the extremities of torsional springs having different wire sizes.
Abstract:
A ratchet-like system for winding a rolling door assembly. The ratchet-like system includes a support bracket, a cam, and a biasing device. The support bracket is preferably mounted onto a fixed structure of the rolling door assembly. The cam is pivotally mounted about the support bracket and positioned adjacent to a portion of an overhead shaft of the assembly. The cam is shaped and sized to cooperate with this portion of the overhead shaft between a first position, where the cam allows rotation of the overhead shaft along a first direction, and a second position, where the cam has a surface engaged with the overhead shaft and where further rotation of the overhead shaft along a second direction, opposite to the first direction, is blocked by the cam. The biasing device is used for urging the surface of the cam onto the overhead shaft. The ratchet-like system is particularly useful for adjustably controlling the rotation of the overhead shaft of the rolling door assembly during the winding thereof.
Abstract:
A winding system for winding a rolling door assembly. The winding system includes a support bracket, first and second gears. The support bracket is preferably rigidly connectable to a fixed structure of the rolling door assembly, and has a receiving device and a supporting device. The first gear is pivotally mounted about the receiving device of the support bracket and rotatable thereabout along opposite first and second directions of rotation. The second gear is pivotally mounted about the supporting device of the support bracket and rotatable thereabout along opposite first and second directions of rotation. The second gear is operatively connected to a corresponding end of the counterbalancing spring of the rolling door assembly and is also threadedly engaged with the first gear such that, a rotation of the first gear along one of its first and second directions of rotation causes the second gear to rotate along a corresponding one of its first and second directions of rotation, thereby resulting in a corresponding winding of the counterbalancing spring of the rolling door assembly.