Abstract:
In an alignment method for effecting alignment between two plate-like objects, a first plate-like object provided with a first alignment mark and a second plate-like object provide with a second alignment mark are disposed opposite to each other. A first area and a second area are provided at mutually nonoverlapping positions in an image pickup area for being observed through an image pickup > device. Images of the first and second alignment marks are picked up by the image pickup device from a direction substantially perpendicular to an in-plane direction of the first and second plate-like objects. Alignment control is effected by using first information about a deviation of the first alignment mark from a predetermined position in the first area and second information about a deviation of the second alignment mark from a predetermined position in the second area.
Abstract:
An imprint apparatus for imprinting a pattern provided to a mold onto a substrate or a member on the substrate includes a light source for irradiating a surface of the mold disposed opposite to the substrate and a surface of the substrate with light; an optical system for guiding the light from the light source to the surface of the mold and the surface of the substrate and guiding reflected lights from these surfaces to a spectroscope; a spectroscope for dispersing the reflected lights guided by the optical system into a spectrum; and an analyzer for analyzing a distance between the surface of the mold and the surface of the substrate. The analyzer calculates the distance between the surface of the mold and the surface of the substrate by measuring a distance between the surface of the mold and a surface formed at a position away from the surface of the mold.
Abstract:
An imprint apparatus for imprinting a pattern provided to a mold onto a substrate or a member on the substrate includes a light source for irradiating a surface of the mold disposed opposite to the substrate and a surface of the substrate with light; an optical system for guiding the light from the light source to the surface of the mold and the surface of the substrate and guiding reflected lights from these surfaces to a spectroscope; a spectroscope for dispersing the reflected lights guided by the optical system into a spectrum; and an analyzer for analyzing a distance between the surface of the mold and the surface of the substrate. The analyzer calculates the distance between the surface of the mold and the surface of the substrate by measuring a distance between the surface of the mold and a surface formed at a position away from the surface of the mold.
Abstract:
An alignment apparatus for aligning a reflective reticle includes a light source for emitting alignment light; an optical unit for guiding the alignment light, which has been emitted by the light source, to an alignment mark provided on the reticle and a reference mark provided on a reticle stage that holds the reticle; and detecting unit for detecting the alignment light reflected from the alignment mark and the reference mark, wherein the reticle is aligned on the basis of the result of detection by the detection unit.
Abstract:
An alignment method for aligning first and second objects, in an exposure apparatus for transferring a pattern of the first object onto the second object as being coated with a resist, includes a process of producing an alignment offset value related to an alignment mark forming region on the second object, after formation of the resist coating thereon, and a process of aligning the first object with the second object as being coated with the resist, in the exposure apparatus, on the basis of the offset value as produced.
Abstract:
A position detecting system includes a light source device for providing coherent light, an incoherence-transforming device for transforming the coherent light from the light source device, into incoherent light, an optical system for dividing the incoherent light from the incoherence-transforming device, wherein one of divided light beams is directed to illuminate a target upon a surface of an object while another of divided light beams is directed to be reflected by a surface which is optically conjugate with the surface of the object, and wherein light from the target and light reflected by the conjugate surface are re-combined, an image pickup device for producing an imagewise signal corresponding to the target on the basis of the light re-combined by the optical system, wherein positional information related to a position of the target with respect to a direction along the surface of the object can be produced on the basis of the imagewise signal, and an image contrast adjusting device for adjusting image contrast of an image of a portion close to the target, as picked up by the image pickup device.
Abstract:
A method and apparatus for aligns two members each having an alignment mark which has mark elements extending in different directions. The marks are scanned with two linear illumination areas which are spaced apart by a predetermined distance and extend in different directions.
Abstract:
A method and apparatus for aligns two members each having an alignment mark which has mark elements extending in different directions. The marks are scanned with two linear illumination areas which are spaced apart by a predetermined distance and extend in different directions.
Abstract:
An observation apparatus includes a laser beam source for producing a laser beam, a condensing optical system for constituting an optical path to condense the laser beam onto an object, a scanner for repeatedly scanning the object with the laser beam, an observation optical system for allowing an operator to observe the object, a photoreceptor for receiving the laser beam reflected by the object and producing an electric signal, a retractable refracting or diffusing optical element, across the condensing optical path, wherein the beam reflected by the object is detected by the photoreceptor when the object is scanned with the condensed laser beam, and the beam reflected by the object is observed through the observation optical system when the object is scanned with the diffused laser beam.