Abstract:
A method of applying a conductive adhesive comprising: using a conductive adhesive 18 made up of conductive beads 12 in an adhesive matrix 8, the conductive beads comprising a polymer core and a conductive coating and having a maximum dimension of 100 μm or less; and depositing droplets of the adhesive 18 on a substrate via a nozzle 20.
Abstract:
A conductive adhesive, such as an anisotropic conductive adhesive, comprising a population of conductive particles and a population of signal particles in an adhesive; wherein both the conductive particle population and the signal particle population have an average particle diameter of
Abstract:
An isotropic conductive adhesive having silver coated polymer beads within an adhesive matrix and a method of forming an isotropic conductive adhesive are disclosed. The mean average diameter of the polymer cores of the beads is less than 30 μm, and the silver coating comprises interlinked silver deposits grown from dispersed nucleation sites scattered across the surface of the beads.
Abstract:
A bridging arrangement includes a first and a second surface defining a gap therebetween. At least one surface of the first and second surface has an anisotropic energy landscape. A plurality of particles defines a path between the first and second surface bridging the gap.
Abstract:
A conductive adhesive, such as an anisotropic conductive adhesive, comprising a population of conductive particles and a population of signal particles in an adhesive; wherein both the conductive particle population and the signal particle population have an average particle diameter of
Abstract:
An isotropic conductive adhesive having silver coated polymer beads within an adhesive matrix and a method of forming an isotropic conductive adhesive are disclosed. The mean average diameter of the polymer cores of the beads is less than 30 μm, and the silver coating comprises interlinked silver deposits grown from dispersed nucleation sites scattered across the surface of the beads.