Abstract:
PROBLEM TO BE SOLVED: To provide a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600-900°C.SOLUTION: The sealing material comprises a glass frit in mol% of: 20-30% of Si; 0-15% of SrO; 0-8% of KO; 0-6% of MgO; 20-30% of CaO; 0-10% of AlO; 35-45% of BO; wherein the total amount of alkali is less than 10 mol%.
Abstract:
Solid oxide fuel cell assemblies comprise packets of multi-cell-sheet devices based on compliant solid oxide electrolyte sheets that form a fuel chamber and support anodes interiorly and cathodes exteriorly of the chamber that can be electrically interconnected to provide a compact, high voltage power-generating unit; added frames can support the oxide sheets and incorporate fuel supply and air supply conduits or manifolds permitting stacking of the assemblies into fuel cell stacks of any required size and power-generating capacity.
Abstract:
A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.-900° C., the seal having a CTE in the 100x10 -7 /° C. to 120x10 -7 /° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO 2 15-65; Li 2 O 0-5; Na 2 O 0-5; K 2 O 0-10; MgO 0-5; CaO 0-32; Al 2 O 3 0-10; B 2 O 3 0-50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
Abstract:
A method and resulting device for metallic structures including interconnects and sealed frames for solid oxide fuel cells, particularly those with multi-cell electrolyte sheets, includes providing a high-temperature aluminum-containing surface-alumina-forming steel, forming an interconnect structure from the steel, removing any alumina layer from a surface portion of the interconnect where an electrical contact is to be formed, providing a structure having a surface portion with which electrical contact is to be made by the surface portion of the interconnect, and brazing the surface portion of the interconnect to the surface portion of the structure, and sealing fuel cell frames by brazing.
Abstract:
A method for fabricating optical devices for transmission and/or manipulation of light includes steps of providing a substrate which defines a reference plane for positioning cladding material and core material, fixing rigid spacers to an upper surface of the substrate, the spacers having upper surfaces which define a second plane spaced above the reference plane, depositing a layer of a formable, curable under-cladding material over the upper surface of the substrate, the upper surface of the rigid spacers providing a guide for precise control of the height of the under-cladding material above the surface of the substrate, curing the under-cladding material under compression to form an under-cladding layer, and depositing a light guide core and over-cladding on the under-cladding. The method is susceptible to mass production and provides more precise control of the position of the light guide core relative to a substrate surface. The resulting optical device includes a substrate, a pattern of rigid spacers fixed to the upper surface of the substrate, a polymeric under-cladding layer positioned on the substrate and in space defined between the rigid spacers, a polymer light guide core positioned on the under-cladding layer, and a polymeric over-cladding layer positioned over the light guide core and at least a portion of the under-cladding.
Abstract:
A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.-900° C., the seal having a CTE in the 100x10 -7 /° C. to 120x10 -7 /° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO 2 15-65; Li 2 O 0-5; Na 2 O 0-5; K 2 O 0-10; MgO 0-5; CaO 0-32; Al 2 O 3 0-10; B 2 O 3 0-50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
Abstract:
Solid oxide fuel cell assemblies comprise packets of multi-cell-sheet devices based on compliant solid oxide electrolyte sheets that form a fuel chamber and support anodes interiorly and cathodes exteriorly of the chamber that can be electrically interconnected to provide a compact, high voltage power-generating unit; added frames can support the oxide sheets and incorporate fuel supply and air supply conduits or manifolds permitting stacking of the assemblies into fuel cell stacks of any required size and power-generating capacity.
Abstract:
A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.-900° C., the seal having a CTE in the 100x10 -7 /° C. to 120x10 -7 /° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO 2 15-65; Li 2 O 0-5; Na 2 O 0-5; K 2 O 0-10; MgO 0-5; CaO 0-32; Al 2 O 3 0-10; B 2 O 3 0-50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
Abstract:
An electrolyte sheet comprises a substantially non-porous body and has at least one stress-relief area on at least a portion of the electrolyte sheet. The stress-relief area has a surface with a plurality of smoothly domed cells.