Abstract:
A strengthened glass sheet product as well as a process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
Surface modification layers (30) and associated heat treatments, that may be provided on a sheet (20), a carrier (10), or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
Abstract:
A strengthened glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets.
Abstract:
A strengthened glass sheet product as well as a process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product as well as a process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A method of removing a desired part of a thin sheet (20) from a thin sheet bonded to a carrier (10) by a bonded area (40) that surrounds a non-bonded area (50), wherein the method includes forming a perimeter vent (60) defining a perimeter of the desired part (56), wherein the perimeter vent is disposed within the non-bonded area and has a depth >= 50% of the thickness (22) of the thin sheet. Prior to removing the desired part, a device may be processed onto the thin sheet. In some processes, the carrier is diced so it may be processed in smaller sizes, yet maintains a hermetically sealed edge. After dicing, an additional part of the device may be processed onto the thin sheet, and the desired part is removed by removing a desired part of the thin sheet from the carrier.
Abstract:
A strengthened glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets.
Abstract:
A strengthened architectural glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened architectural glass or glass-ceramic sheet or article is provided. The process comprises cooling the architectural glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened architectural glass sheets that may be incorporated into one or more panes in single or multi-pane windows.
Abstract:
A honeycomb extrusion die (100), a method of making the same, and an apparatus for forming the same. The die (100) includes: a feed hole plate (202) comprising an input surface (202A), an opposing output surface (202B), and feed holes (108) configured to guide a batch material from the input surface (202A) to the output surface (202B); and a pin assembly (204) comprising pins (300) disposed on the feed hole plate (202). At least one of the pins includes: a tail (304); a head (302) connected to the tail (304) and comprising alignment surfaces (314) configured to align the pins (300), flow surfaces (316) disposed between the alignment surfaces (314), and a tapered portion (310) comprising a contact surface (308) adhered to the output surface (202B) of the feed hole plate (202); and a first groove (306) disposed between the head (302) and the tail (304). In the pin assembly (204), the alignment surfaces (314) contact adjacent pins (300) to align the pins (300), such that discharge slots are at least partially defined by the tails (304) of the pins (300).