Abstract:
A flow of ATM cells to be cross-connected performs two consecutive passes through the connection network (PX) of a node. In the first pass the virtual channels of the input virtual paths (A, B, C) are distributed among intermediate virtual channel bundles (A'...C''') each with an overall peak bandwidth equal to that of the virtual path of origin of its contributing channels; between the first and the second pass, the virtual channels are cross-connected and the related cells are temporarily memorized, and at the same time the cell flow to be associated to an output virtual path is shaped; and in the second pass the virtual paths are cross-connected, Temporary memorization and shaping are accomplished in a device (SMS) connected between the outputs and the inputs of the connection network (PX) of the node.
Abstract:
A switching element for self-routing, multistage, packet-switching, interconnection networks which comprise: an input unit, composed of as many sections ( IMA, IMB) as there are elements inputs, each section comprising a FIFO memory (FIFA, FIFB) for packet buffering; a switch (SW) associated with a control unit (SCU) which, for each packet to be forwarded, sets up a requested connection for that packet between one input and one or more outputs of the element (ECP), based on a routing tag associated with each packet and comprising a first and a second portion relative to normal routing and to broadcasting in the different stages of the network (RC), and solves possible routing conflicts between packets simultaneously arriving at different inputs; and an output unit, composed of as many sections (RUO, RUl) as there are element outputs and performing the functions necessary for correct packet forwarding toward a destination. The control unit (SCU) of the switch (SW) is arranged to handle broadcasting of a packet independently of all other elements (ECP) in the same stage, to allow broadcasting to a number of destinations, not limited to a power of 2, (for an element with two inputs and two outputs) and cooperates with the memory (FIF) storing the packet to be broadcast in such a way that broadcasting does not give rise to internal blocking in the network (RC). The control unit (SCU) moreover solves routing conflicts to set an upper bound to packet residence time within the network.
Abstract:
A flow of ATM cells to be cross-connected performs two consecutive passes through the connection network (PX) of a node. In the first pass the virtual channels of the input virtual paths (A, B, C) are distributed among intermediate virtual channel bundles (A'...C''') each with an overall peak bandwidth equal to that of the virtual path of origin of its contributing channels; between the first and the second pass, the virtual channels are cross-connected and the related cells are temporarily memorized, and at the same time the cell flow to be associated to an output virtual path is shaped; and in the second pass the virtual paths are cross-connected, Temporary memorization and shaping are accomplished in a device (SMS) connected between the outputs and the inputs of the connection network (PX) of the node.
Abstract:
A flow of ATM cells to be cross-connected performs two consecutive passes through the connection network (PX) of a node. In the first pass the virtual channels of the input virtual paths (A, B, C) are distributed among intermediate virtual channel bundles (A'...C''') each with an overall peak bandwidth equal to that of the virtual path of origin of its contributing channels; between the first and the second pass, the virtual channels are cross-connected and the related cells are temporarily memorized, and at the same time the cell flow to be associated to an output virtual path is shaped; and in the second pass the virtual paths are cross-connected, Temporary memorization and shaping are accomplished in a device (SMS) connected between the outputs and the inputs of the connection network (PX) of the node.
Abstract:
A flow of ATM cells to be cross-connected performs two consecutive passes through the connection network (PX) of a node. In the first pass the virtual channels of the input virtual paths (A, B, C) are distributed among intermediate virtual channel bundles (A'...C''') each with an overall peak bandwidth equal to that of the virtual path of origin of its contributing channels; between the first and the second pass, the virtual channels are cross-connected and the related cells are temporarily memorized, and at the same time the cell flow to be associated to an output virtual path is shaped; and in the second pass the virtual paths are cross-connected, Temporary memorization and shaping are accomplished in a device (SMS) connected between the outputs and the inputs of the connection network (PX) of the node.