Abstract:
An oscillator assembly includes a substrate having a top surface, a bottom surface, and a plurality of side surfaces. At least one of the side surfaces has at least one castellation which is covered with conductive material and includes a lower end spaced from the bottom surface of the substrate. The space is defined by an elongate groove in the side surface which is devoid of conductive material and extends between the lower end of the castellation and the bottom surface of the substrate to eliminate the risk of a short circuit with any of the connection pads on a customer's motherboard. The oscillator assembly further incorporates an oscillator circuit in which a current limiting resistor is located in series between the power supply and the heater control circuit.
Abstract:
An oscillator includes an oscillator circuit and a resonator that produces an output frequency. A temperature compensation circuit is coupled to the oscillator circuit. The temperature compensation circuit stabilizes the output frequency in response to changes in temperature. At. least one temperature sensor and a temperature sensor signal modification circuit are coupled to the temperature compensation circuit. The temperature sensor signal modification circuit receives a temperature signal from the temperature sensor and generates a modified temperature sensor signal that is transmitted to the temperature compensation circuit.
Abstract:
An oscillator assembly includes an oscillator circuit that is configured to generate a frequency signal. A temperature compensation circuit is in communication with the oscillator circuit and adapted to adjust the frequency signal in response to changes in temperature. The oscillator and temperature compensation circuits are located within an oven. A heater and a temperature sensor in communication with the heater are also both located in the oven. The temperature sensor is adapted to directly control the heater in response to changes in temperature. In one embodiment, the oscillator components are mounted to a ball grid array substrate which, in turn, is mounted on a printed circuit board. In this embodiment, a resonator overlies the ball grid array substrate and a lid covers and defines an oven and enclosure for the resonator and the ball grid array substrate. The oscillator and temperature compensation circuit are defined on the ball grid array substrate.
Abstract:
An oscillator includes an oscillator circuit and a resonator that produces an output frequency. A temperature compensation circuit is coupled to the oscillator circuit. The temperature compensation circuit stabilizes the output frequency in response to changes in temperature. At. least one temperature sensor and a temperature sensor signal modification circuit are coupled to the temperature compensation circuit. The temperature sensor signal modification circuit receives a temperature signal from the temperature sensor and generates a modified temperature sensor signal that is transmitted to the temperature compensation circuit.