Abstract:
A sensor function testing method and a computer program product thereof are provided. In the present method, a rearm type corresponding to a rearm function of a sensor in a server is obtained, wherein the sensor is in a normal status or one of a plurality of failure statuses. Then, the sensor is respectively triggered to enter and exit each of the failure statuses. If the rearm type is an auto rearm type and the sensor automatically returns to the normal status every time when the sensor is triggered to exit one of the failure statuses, the rearm function is determined as normal. If the rearm type is a manual rearm type and the sensor only returns to the normal status after receiving a rearm instruction every time when the sensor is triggered to exit one of the failure statuses, the rearm function is determined as normal.
Abstract:
An intelligent platform management interface (IPMI) server management system includes a managing side and a plurality of managed sides. The managed sides includes at least on active IPMI managed sides, wherein each of the active IPMI managed side actively provides its service information to the managing side so as to establish a first list, and then the managing side searches out the managed sides which are not on the first list one by one so as to establish a second list. Therefore, the IPMI server management system may effectively sort out the managed sides which are available for application.
Abstract:
The present invention relates to a temperature measurement device, particularly to a temperature measurement device for the cold junction of a non-contact temperature measurement element, characterized in that a plurality of electrical-conductive pins is provided on the bottom surface of a base. A sensor element for detecting object temperature and a heat-conductive elongated block are provided on the top surface of the base, the heat-conductive elongated block having a sensor element for detecting ambient temperature secured on the top surface thereof, wherein the heat capacity of the sensor element for detecting ambient temperature together with that of the heat-conductive elongated block will approximately be equal to that of the sensor element for detecting object temperature, such that the heat-balance constants of the sensor element for detecting ambient temperature and the cold junction of the sensor element for detecting object temperature will virtually coincide with each other at an abrupt temperature change. Consequently, the dynamic temperature difference between the sensor element for detecting ambient temperature and the cold junction of the sensor element for detecting object temperature may be diminished. In this manner, not only the accuracy of the temperature measurement from the detected object may be raised significantly, but also the sensitivity of the measurement may be maintained effectively.
Abstract:
A metallic silicide resistive thermal sensor has a body, a conductive wire and multiple electrodes. The body has multiple etching windows formed on the body and a cavity formed under the etching windows. The etching windows separate the body into a suspended part and multiple connection parts. The conductive wire is formed on the suspended part and the connection parts and is made of metallic silicide. The electrodes are formed on the body and are electrically connected to the conductive wire. The metallic silicide is compatible for common CMOS manufacturing processes. The cost for manufacturing the resistive thermal sensor decreases. The metallic silicon is stable at high temperature. Therefore, the performance of the resistive thermal sensor in accordance with the present invention is improved.
Abstract:
To form a single crystal silicon membrane with a suspension layer, a single crystal silicon substrate with crystal orientation is prepared. A doped layer is formed on the top surface of the single crystal silicon substrate. Multiple main etching windows are formed through the doped layer. A cavity is formed through the single crystal silicon substrate by anisotropic etching. The doped layer is above the cavity to form a suspension layer. If two electrode layers are formed on the two ends of the suspension layer, a micro-heater is constructed. The main etching windows extend in parallel to a crystal plane {111}. By both the single crystal structure and different impurity concentrations of the single crystal silicon substrate, the single crystal silicon substrate has a higher etch selectivity. When a large-area cavity is formed, the thickness of the suspension layer is still controllable.
Abstract:
To form a single crystal silicon membrane with a suspension layer, a single crystal silicon substrate with crystal orientation is prepared. A doped layer is formed on the top surface of the single crystal silicon substrate. Multiple main etching windows are formed through the doped layer. A cavity is formed through the single crystal silicon substrate by anisotropic etching. The doped layer is above the cavity to form a suspension layer. If two electrode layers are formed on the two ends of the suspension layer, a micro-heater is constructed. The main etching windows extend in parallel to a crystal plane {111}. By both the single crystal structure and different impurity concentrations of the single crystal silicon substrate, the single crystal silicon substrate has a higher etch selectivity. When a large-area cavity is formed, the thickness of the suspension layer is still controllable.
Abstract:
An intelligent platform management interface (IPMI) server management system includes a managing side and a plurality of managed sides. The managed sides includes at least on active IPMI managed sides, wherein each of the active IPMI managed side actively provides its service information to the managing side so as to establish a first list, and then the managing side searches out the managed sides which are not on the first list one by one so as to establish a second list. Therefore, the IPMI server management system may effectively sort out the managed sides which are available for application.
Abstract:
A computer system and a method for managing computer devices, which are applicable to at least a computer device, are provided. The method includes the following steps: detecting a plurality of operation conditions of the computer device so as to obtain a system event log; triggering an alert event according to the system event log; turning the system event log into internet information according to the alert event and transmitting the internet information to a remote server through a internet, so as to use the remote server for interpreting the system event log.
Abstract:
A sensor function testing method and a computer program product thereof are provided. In the present method, a rearm type corresponding to a rearm function of a sensor in a server is obtained, wherein the sensor is in a normal status or one of a plurality of failure statuses. Then, the sensor is respectively triggered to enter and exit each of the failure statuses. If the rearm type is an auto rearm type and the sensor automatically returns to the normal status every time when the sensor is triggered to exit one of the failure statuses, the rearm function is determined as normal. If the rearm type is a manual rearm type and the sensor only returns to the normal status after receiving a rearm instruction every time when the sensor is triggered to exit one of the failure statuses, the rearm function is determined as normal.
Abstract:
A web server system and a method for operating a web server thereof are provided. The method includes the following steps. A first browsing request issued by a remote apparatus is received, wherein the first browsing request records a web address of a first web page. It is determined that whether simplified browser information is recorded in a header of the first browsing request. A transformed address response is generated if the simplified browser information is recorded in the header of the first browsing request, and a header of the transformed address response records a web address of a second web page. The transformed address response triggers the remote apparatus to issue the second browsing request recording the web address of the second web page. The second web page is sent out according to the second browsing request recording the web address of the second web page.