Abstract:
An apparatus for converting a gaseous and/or liquid feed fluid to gaseous and/or liquid products using a solid catalyst comprises a reactor, a liquid phase disposed within the reactor volume, a fixed catalyst at least partially disposed in the liquid phase, a cooling system having a cooling element in thermal contact with the liquid phase, a feed inlet positioned to feed the feed fluid into the reactor volume, and a fluid outlet in fluid communication with the liquid phase. The catalyst is contained in a catalyst container and the container may be adjacent to said cooling element, extend through said cooling element, or may surround the catalyst container. The catalyst may be a Fischer-Tropsch catalyst.
Abstract:
The present invention teaches a method for increasing the cobalt surface area per gram of catalyst in a cobalt Fischer-Tropsch catalyst, supported on a silica-based carrier material, by using cobalt amine carbonate precursors. A Fischer-Tropsch catalyst preferably includes a catalytically active first metal containing cobalt, and a carrier material containing silica or a silica compound with a cobalt surface area greater than 13 m2/g catalyst. The catalyst active in the FT reaction has a minimum alpha value of 0.87 and a CO conversion of 24 wt % or more. In accordance with another preferred embodiment, a process for producing a Fischer-Tropsch catalyst includes saturating silica or silica compounds with a solution of cobalt amine carbonate, removing the excess solution by filtration, heating the resulting product in order to allow cobalt hydroxycarbonate to precipitate, and drying and calcining the resulting product. Optionally the calcined product is reduced.
Abstract:
Methods and apparatus for separating liquid products and catalyst fines from a slurry used in a Fischer-Tropsch reactor. A settling system continuously or intermittently removes catalyst fines from the slurry and is coupled with catalyst-liquid separation system that separates liquid products from the slurry. The preferred separation system produces a sub-particle rich stream and a catalyst-lean stream that are removed from the system. The systems of the present invention act to reduce the concentration of catalyst fines in the reactor, thereby increasing the effectiveness of a catalyst-liquid separation system.
Abstract:
The present invention presents an iron-based Fischer-Tropsch catalyst having a low water-gas shift activity and high selectivity and productivity toward a hydrocarbon wax wherein said catalyst comprises iron; silver; sodium, lithium, potassium, rubidium and/or cesium; optionally, calcium, magnesium, boron, and/or aluminum; and a silica structural promoter. The present invention further presents a method of making a precipitated iron-based Fischer-Tropsch catalyst. The present invention still further presents a process for producing hydrocarbons using the iron-based, precipitated Fischer-Tropsch catalyst of the present invention.
Abstract:
The present invention relates to a method and apparatus for reducing the maximum water concentration in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the maximum concentration of water in a multi-phase reactor containing an expanded slurry bed and a water-rich slurry region for Fisher-Tropsch synthesis includes changing the flow structure of a predetermined region in the reactor. The flow structure may be changed by introducing a mixing enhancing fluid into the predetermined region, installing baffles into the predetermined region, or by other methods known in the art. Preferably the predetermined region is located between null H and H and between null R and R, where H is the height of the expanded slurry bed and R is the radius of the reactor.
Abstract:
A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
Abstract:
A process for reducing C2-C9 olefin formation by recycling them to a Fischer-Tropsch hydrocarbon synthesis process and promoting recycled olefins chain growth comprises contacting a gas feed comprising a mixture of H2 and CO with a catalyst in a reactor system at conditions effective to produce a hydrocarbon product stream including C2-C9 olefins, separating a C2-C9 olefins-rich stream from the hydrocarbon product stream to form a light olefin recycle stream and recycling the light olefin recycle stream to the reactor system at a point in the reactor system where the H2:CO ratio is low relative to the H2:CO ratio in the rest of the reactor system. Depending on whether the initial H2:CO ratio is greater or less than the usage ratio of the selected catalyst, the recycled olefins can be returned to the system up- or downstream of the reactor system.
Abstract:
A method for making a catalyst is provided that features loading a catalytic metal to a support using at least two different precursor compounds of that said metal; and loading the promoter to the support in an amount effective so as to achieve similar promotion as for a comparable catalyst comprising a greater amount of the promoter using only one precursor compound, where the catalytic metal is selected from among Group 8 metals, 9 metal, Group 10 metals, and combinations thereof. The promoter is preferably boron, silver, a noble metal, or combination thereof. Also provided are catalysts made by the method and Fischer-Tropsch processes that include contacting synthesis gas with a catalyst made by the method.
Abstract:
The present invention is an improvement in the preparation of liquid hydrocarbons from natural gas/methane, oxygen and/or steam. In particular, the present invention relates to processes for the production of synthesis gas, reducing the oxygen concentration from the synthesis gas, and the production of liquid hydrocarbons using the oxygen reduced synthesis gas as a feedstock. More particularly, the present invention described herein identifies catalyst compositions, apparatus and methods of using such catalysts and apparatus for preparing liquid hydrocarbons via oxygen reduced synthesis gas all in accordance with the present invention.
Abstract:
The present invention relates to a method and apparatus for water removal in multi-phase reactors operating at Fischer-Tropsch conditions. In a preferred embodiment of the present invention, a method of reducing the concentration of water in a multi-phase reactor for Fisher-Tropsch synthesis containing an expanded slurry bed and a water-rich slurry region includes removing a portion of water from the water-rich slurry from a predetermined region in the reactor, removing the water from the water-rich slurry to form a water-reduced slurry, and returning the water-reduced slurry back to the reactor. Preferably the water-rich slurry region is located between nullH to H and nullR to R, where H is the height of the expanded slurry bed and R is the radius of the expanded slurry bed.