Abstract:
Catalysts and methods useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) are disclosed. The ODH catalysts are comprised of a Group VIII promoter metal present at trace levels. The Group VIII promoter metal is preferably platinum, palladium or a combination thereof and is preferably present at a promoter metal loading of between about 0.005 and about 0.1 weight percent. Optionally, the ODH catalysts include a base metal, metal oxide, or combination thereof. The optional base metal is selected from the group consisting of Group IB-IIB metals, Group IVB-VIIB metals, Group IIA-VA metals, scandium, yttrium, actinium, iron, cobalt, nickel, their oxides, and combinations thereof. The base metal is more preferably selected from the group consisting copper, tin, chromium, gold, manganese and their respective oxides and any combinations thereof. The base metal loading is preferably between about 0.5 and about 10 weight percent. Optionally, the promoter metal can be supported on a refractory material. The refractory support is preferably comprised of a material selected from group consisting of zirconia, stabilized zirconias, alumina, stabilized aluminas, and combinations thereof.
Abstract:
A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600null C. to 800null C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
Abstract translation:从废负载型催化剂中回收铑的方法。 在一个实施方案中,从主体材料回收铑的方法包括在足以将至少一部分铑转化为Rh 2 O 3的温度下在空气中焙烧主体材料,将主体材料浸入溶液中,浸出成分与 Rh 2 O 3以形成第一中间物质,使溶液中的第一中间物质与酸化成分或络合剂反应以形成第二中间物质,并纯化第二中间物质。 优选地,焙烧温度为约600℃至800℃,持续0.5至10小时。 在一些实施方案中,将主体材料研磨至0.1至10mm范围内的颗粒。
Abstract:
Catalysts and methods useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) are disclosed. The ODH catalysts include a base metal selected from the group consisting of lanthanide metals, their oxides, and combinations thereof. The base metal is more preferably selected from the group consisting of samarium, cerium, praseodymium, terbium, their corresponding oxides and combinations thereof. The base metal loading is preferably between about 0.5 and about 20 weight percent and more preferably between about 2 and about 10 weight percent. Optionally, the ODH catalysts are further comprised of a Group VIII promoter metal present at trace levels. The Group VIII promoter metal is preferably platinum, palladium or a combination thereof and is preferably present at a promoter metal loading of between about 0.005 and about 0.1 weight percent. Optionally, the ODH catalyst is supported on a refractory support.