Abstract:
A polymer composition containing (a) a high impact polystyrene (HIPS) component with a block copolymer grafted to polystyrene, a rubbery conjugated diene content of one to seven weight percent based on HIPS weight, less than 10 weight-percent gel concentration, an average rubber particle size of between one and 0.01 micrometers, about 40 to about 90 volume percent of the rubber particles have diameters of less than about 0.4 microns and from about 10 to about 60 volume percent of the rubber particles have diameters between about 0.4 and about 2.5 microns, a majority of rubber particles with a core/shell morphology and a concentration that accounts for 10 to 70 weight-percent of the total polymer composition weight and one to five weight-percent rubbery diene based on total polymer composition weight; (b) from 10 to 70 weight percent of a general purpose polystyrene and from about 2 to about 80 weight-percent of a styrene block copolymer component, both based on total polymer composition weight. In a film, preferably oriented, wherein the polymer composition accounts for at least 95 weight-percent of the film, with the balance of the film or film composition weight being additives. Shrink labels are made from the film.
Abstract:
Improve ASTM E-84 flame spread index and smoke developed index ratings of polyisocyanurate or urethane-modified isocyanurate foams by coating one or both major planar surfaces of a foam body or board with an intumescent coating material that contains expandable graphite and a silicate. If desired, provide reinforcement for the intumescent coating when it intumesces using a material such as a carbon veil mat or a fiberglass mat. Add a moisture vapor barrier layer to minimize water-induced degradation or water absorption of the foam.
Abstract:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95C, (d) an a-olefin content of at least about 15 and less than about 50 wt% based on the weight of the polymer, (e) a Tg of less than about -35C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/a-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
Abstract:
A polymer composition containing (a) a high impact polystyrene (HIPS) component with a block copolymer grafted to polystyrene, a rubbery conjugated diene content of one to seven weight percent based on HIPS weight, less than 10 weight-percent gel concentration, an average rubber particle size of between one and 0.01 micrometers, about 40 to about 90 volume percent of the rubber particles have diameters of less than about 0.4 microns and from about 10 to about 60 volume percent of the rubber particles have diameters between about 0.4 and about 2.5 microns, a majority of rubber particles with a core/shell morphology and a concentration that accounts for 10 to 70 weight-percent of the total polymer composition weight and one to five weight-percent rubbery diene based on total polymer composition weight; (b) from 10 to 70 weight percent of a general purpose polystyrene and from about 2 to about 80 weight-percent of a styrene block copolymer component, both based on total polymer composition weight. In a film, preferably oriented, wherein the polymer composition accounts for at least 95 weight- percent of the film, with the balance of the film or film composition weight being additives. Shrink labels are made from the film.
Abstract:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0,90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Abstract:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95C, (d) an .alpha.-olefin content of at least about 15 and less than about 50 wt% based on the weight of the polymer, (e) a Tg of less than about -35C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/.alpha.-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
Abstract:
An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprisi ng an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0,90 gra ms per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the de vice. Optionally, the polymeric material can further comprise a scorch inhib itor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Abstract:
A biaxially oriented film has a machine direction-orientation (MDO) ratio of more than 1.2 and a transverse direction orientation (TDO) ratio of 2.0 or less, where the MDO ratio is greater than the TDO ratio; where the film contains a polymer composition containing a first high impact polystyrene (HIPS) component with a block copolymer grafted to polystyrene, a rubbery conjugated diene content of one to seven weight percent based on first HIPS weight, less than 10 weight-percent gel concentration, an average rubber particle size of between one and 0.01 micrometers, about 40 to about 90 volume percent of the rubber particles have diameters of less than about 0.4 microns and from about 10 to about 60 volume percent of the rubber particles have diameters between about 0.4 and about 2.5 microns, a majority of rubber particles with a core/shell morphology and a concentration that accounts for 30 to 100 weight-percent of the total polymer composition weight and one to five weight-percent rubbery diene based on total polymer composition weight. The film can also contain up to 70 weight percent of a general purpose polystyrene and up to 20 weight-percent of a second HIPS component that is different from the first HIPS component, both based on total polymer composition weight. The polymer composition accounts for at least 95 weight-percent of the film, with the balance of the film weight being additives.
Abstract:
A polymer composition containing (a) a high impact polystyrene (HIPS) component with a block copolymer grafted to polystyrene, a rubbery conjugated diene content of one to seven weight percent based on HIPS weight, less than 10 weight-percent gel concentration, an average rubber particle size of between one and 0.01 micrometers, about 40 to about 90 volume percent of the rubber particles have diameters of less than about 0.4 microns and from about 10 to about 60 volume percent of the rubber particles have diameters between about 0.4 and about 2.5 microns, a majority of rubber particles with a core/shell morphology and a concentration that accounts for 10 to 70 weight-percent of the total polymer composition weight and one to five weight-percent rubbery diene based on total polymer composition weight; (b) from 10 to 70 weight percent of a general purpose polystyrene and from about 2 to about 80 weight-percent of a styrene block copolymer component, both based on total polymer composition weight. In a film, preferably oriented, wherein the polymer composition accounts for at least 95 weight-percent of the film, with the balance of the film or film composition weight being additives. Shrink labels are made from the film.
Abstract:
Structures of the present invention contain a non-oriented multilayer film with a polyolefin core having 40 weight-percent or less homogeneous ethylene/alpha-olefin, a modified polyolefin tie layer on each side of the core, and an adhesive layer on at least one tie layer. The adhesive layer contains a polar-modified polyolefin and a polyester, copolyester, or polyester/copolyester blend. The multilayer film has utility as a protective coating for metal surfaces.