Abstract:
This disclosure relates to a method for the in-situ encapsulation and/or insulation of piping, such as underground piping, particularly underground piping carrying high temperature (e.g. >120o C) fluids, such as steam using silicone-based compositions such as liquid silicone rubber materials and/or silicone foams. This may be done by inserting a hose into a pipe cavity so that a first end of the hose is remotely positioned next to the pipe and a second end of the hose is attached to a pumping system wherein a silicone composition is pumped through the hose and into the cavity surrounding from the remote first end of the tubing at a first predefined rate, the hose is gradually withdrawn from the cavity at a second predefined rate and the silicone material is allowed to cure and become rigid, thereby encapsulating and/or insulating the pipe.
Abstract:
A formulation system contains: (a) a pre-polymer reaction product of a polymeric isocyanate and a polyether polyol, where: (i) the polymeric isocyanate contains five weight-percent or more methylene diphenyl diisocyanate; (ii) the polymeric isocyanate has a functionality of 3.0 or less; (iii) the polyether polyol is present in the pre-polymer at a concentration of one to 25 weight-percent; (iv) the polyol has an equivalent weight of 50 to 500 grams per equivalent; (v) the -NCO concentration of the pre-polymer is 15 to 31 weight-percent; (vi) the pre-polymer is free of isocyanate trimers; (b) a polyester polyol component containing 10 to 25 weight-percent of free glycol; and (c) a blowing agent that contains less than five weight-percent water; where the ratio of pre-polymer and polyester result in foam having a trimer content of 12 to 22 weight-percent, and an -NCO index of more than 300 and less than 700.
Abstract:
Silicone foam compositions for forming foamed silicone elastomers are described herein, together with the respective foamed silicone elastomers formed therefrom and to methods of making such compositions and foamed silicone elastomers. The silicone rubber foam composition comprising: (a) one or more organopolysiloxane polymers having an average of at least two epoxide groups per molecule; (b) a Lewis acid catalyst, (c) one or more surfactants and optionally (d) a physical blowing agent. The foamed silicone elastomers are prepared by either mechanically foaming components (a), (b) and (c); or by introducing a physical blowing agent (d); and causing foaming by physical blowing.
Abstract:
Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1x1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.
Abstract:
Hydroxyl-containing copolymers of butylene oxide and ethylene oxide having a hydroxyl equivalent weight of at least 150, an average of 1.8 to 6 hydroxyl groups per molecule of which hydroxyl groups at least 70% are primary hydroxyl groups and an oxyethylene content of no greater than 10% by weight based on the weight of the copolymer, are useful for making polyurethanes. These polyols are characterized by high reactivity and fast curing times. Polyurethanes made using these polyols have excellent mechanical properties and are highly hydrophobic.
Abstract:
Polyurethanes are made in a one-shot process from one or more polyols having a hydroxyl equivalent weight of at least 350, wherein at least 50% of the weight of iii) is a hydroxyl-containing polymer of propylene oxide, the hydroxyl-containing polymer of propylene oxide having a hydroxyl equivalent weight of at least 350, an average of 1.8 to 3 hydroxyl groups per molecule of which hydroxyl groups 40 to 70% are primary hydroxyl groups, an oxyethylene content of no greater than 10% by weight based on the weight of the polymer and a polydispersity of 1.175 or less. The polyurethanes exhibit excellent mechanical properties, are highly hygroscopic and cured rapidly.
Abstract:
This disclosure relates to continuous methods for making foamed silicone products using at least one blowing agent which is a non-flammable and/or inert gas at 0oC (zero oC) and atmospheric pressure (approximately 101,325 Pa). Multiple-part silicone foam compositions used for forming foamed silicone products in said methods, and the resulting foamed silicone product formed from such compositions are also described. The blowing agent may be carbon dioxide, air or nitrogen.
Abstract:
This disclosure relates to silicone foam compositions for forming foamed silicone elastomers, the respective foamed silicone elastomers formed therefrom and to methods of making such compositions and foamed silicone elastomers. The silicone rubber foam composition comprises the (a) one or more organosilicon compounds having an average of at least two silicon bonded alkoxy groups per molecule selected from one or more silicone resins and/or silicone resin intermediates; (b) a Lewis acid catalyst; (c) one or more surfactants; and (d) one or more organopolysiloxane polymers having an average of at least two, alternatively at least three silicon bonded hydrogen groups per molecule.
Abstract:
A fire retardant article has a wood-based material with a polyisocyanurate foam article attached thereto, where the polyisocyanurate foam article covers 90% or more of the exposed portion of the wood-based material, has a thickness greater than 1.8 centimeters, a foam core having a density of 28-128 kg/m 3 , a trimer concentration characterized by at least one of (i) a trimer level in a range of 12-25 weight-percent and (ii) a molar ratio of trimer to sum of urethane and urea in a range of 1-8, a phosphorous concentration of at least 0.3 wt%, a combined concentration of phosphorous and bromine of at least 0.5 wt%, and a vapor permeable and non-combustible facer on at least one primary surface of the foam core.
Abstract:
A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.