Abstract:
The present invention provides methods for using single source organometallic precursors in the fabrication of polycrystalline Group III-Group V compounds, preferably semiconductor compounds. The present invention teaches how to select organometallic ligands in single-source precursors in order to control the stoichiometry of the corresponding Group III-Group V compounds derived from these precursors. The present invention further teaches how to anneal precursors in the presence of one or more flux agents in order to increase the crystalline grain size of polycrystalline Group III-Group V compounds derived from organometallic precursors. This helps to provide Group III-Group V semiconductors with better electronic properties. The flux layer also helps to control the stoichiometry of the Group III-Group V compounds.
Abstract:
Methods of preparing compounds of the formula: Me 3 M, wherein M is gallium, indium or thallium; the methods comprising reacting at least three equivalents of a halomethane compound with a compound of the formula (R) 3 M; wherein each R is independently C 2 -C 8 alkyl.
Abstract:
The present invention provides strategies for improving the quality of the insulating layer in MIS and SIS devices in which the insulator layer interfaces with at least one pnictide-containing film. The principles of the present invention are based at least in part on the discovery that very thin (20 nm or less) insulating films comprising a chalcogenide such as i-ZnS are surprisingly superior tunnel barriers in MIS and SIS devices incorporating pnictide semiconductors. In one aspect, the present invention relates to a photovoltaic device, comprising: a semiconductor region comprising at least one pnictide semiconductor; an insulating region electrically coupled to the semiconductor region, wherein the insulating region comprises at least one chalcogenide and has a thickness in the range from 0.5 nm to 20 nm; and a rectifying region electrically coupled to the semiconductor region in a manner such that the insulating region is electrically interposed between the collector region and the semiconductor region.
Abstract:
A light splitting optical module that converts incident light into electrical energy, the module including a solid optical element comprising an input end for receiving light, a first side, and a second side spaced from the first side, a first solar cell adjacent to the first side of the solid optical element, and a second solar cell adjacent to the second side of the solid optical element. The first solar cell is positioned to absorb a first subset of incident light and reflect a first remainder of the incident light to the second solar cell through the solid optical element, wherein the first solar cell has a lower band gap than the second cell.
Abstract:
A photovoltaic system that converts incident light into electrical energy that includes a light trapping optical module having a light randomizing dielectric slab with a first surface and a second surface, a first cell adjacent to the first surface of the slab that has a bandgap of lower energy than the energy of absorption onset of the dielectric slab, at least one filter element in optical contact with the second surface of the dielectric slab, and a sub-cell array with a plurality of photovoltaic sub-cells, wherein at least one of the sub-cells has a first surface that is in optical contact with the at least one filter element.
Abstract:
The present invention provides methods for making pnictide compositions, particularly photoactive and/or semiconductive pnictides. In many embodiments, these compositions are in the form of thin films grown on a wide range of suitable substrates to be incorporated into a wide range of microelectronic devices, including photovoltaic devices, photodetectors, light emitting diodes, betavoltaic devices, thermoelectric devices, transistors, other optoelectronic devices, and the like. As an overview, the present invention prepares these compositions from suitable source compounds in which a vapor flux is derived from a source compound in a first processing zone, the vapor flux is treated in a second processing zone distinct from the first processing zone, and then the treated vapor flux, optionally in combination with one or more other ingredients, is used to grow pnictide films on a suitable substrate.
Abstract:
A composition comprising a phase separated block copolymer and an inorganic dielectric nanoparticle, wherein the nanoparticle is dispersed in the copolymer and is present primarily in one phase. For example, a Ti0 2 nanocomposite can be created via the in situ formation of Ti0 2 within a silane-grafted OBC. Taking advantage of the phase morphology of the OBC and the differential swelling of the hard and soft segments, due to their inherent crystallinity, enables the selective incorporation of Ti0 2 nanoparticles into the soft segments of the OBC.
Abstract:
A light splitting optical module that converts incident light into electrical energy, the module including a solid optical element comprising an input end for receiving light, a first side, and a second side spaced from the first side, a first solar cell adjacent to the first side of the solid optical element, and a second solar cell adjacent to the second side of the solid optical element. The first solar cell is positioned to absorb a first subset of incident light and reflect a first remainder of the incident light to the second solar cell through the solid optical element.
Abstract:
The present invention provides photovoltaic devices that comprise multiple bandgap cell arrays in combination with spectrum splitting optics. The spectrum splitting optics include one or more optical spectrum splitting modules that include two or more optical splitting, diffractive elements that are optically in series to successively and diffractively split incident light into segments or slices that are independently directed onto different photovoltaic cell(s) of the array having appropriate bandgap characteristics.
Abstract:
A process for the copolymerization of ethylene and 1-octene to form a copolymer by contacting a mixture comprising ethylene and 1-octene under polymerization conditions with a catalyst composition comprising a metal complex, a cocatalyst and a polymerization modifier, characterized in that, the metal complex comprises a 3-amino- substituted inden-1-yl complex of titanium; the cocatalyst comprises tris(pentafluorophenyl)boron or a trialkylammonium salt of tetrakis(pentafluorophenyl)borate; and the polymerization modifier comprises a compound selected from: the 1:1 molar reaction products of t-butanol with trioctylaluminum; the 1:1 molar reaction products of 2,6-diphenylphenol, 2,6-di(t-butyl)-4-methylphenol, phenol, or t-butyldi(methyl)hydroxysilane with triisobutylaluminum; the 2:1 molar reaction products of di(n-pentyl)amine with triisobutylaluminum; the 2:1 molar reaction products of 2,6-diphenylphenol or t-butyldi(methyl)hydroxysilane with triethylaluminum; the 1:1 molar reaction products of 2,6-diphenylphenol, 2,6-di(t-butyl)-4-methylphenol, phenol, t-butanol, 1-dodecanol, t-butyldi(methyl)hydroxysilane, or p-methoxyphenol with trioctylaluminum; and the 2:1 molar reaction products of 2,6-diphenylphenol, 2,6-di(t-butyl)-4-methylphenol and t-butyldi(methyl)hydroxysilane with tri(octyl)aluminum.