Abstract:
A tuning fork gyroscope design where at least one proof mass is supported above a substrate. At least one drive electrode is also supported above the substrate adjacent the proof mass. Typically, the proof mass and the drive electrode include interleaved electrode fingers. A sense plate or shield electrode on the substrate beneath the proof mass extends completely under the extent of the electrode fingers of proof mass.
Abstract:
A flyer assembly (10) is adapted for launching with, transit in, and deployment from an artillery shell (22). The flyer assembly (10) includes a jettisonable shroud (12) and a flyer (14). The flyer (14) is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer (14) is positionable within the shroud (12) with the flyer axis parallel to the shroud axis and the shell axis. The flyer (14) includes a body member disposed about the flyer axis, and a foldable wing assembly (20) mounted to the body member. THe wing assembly (20) is characterized by a plurality of nested wing segments (32) when the flyer is in the first state. THe wing assembly (20) is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly (10) is launched from an artillery cannon, and can thus reach a target quickly, without expending energy stored with theflyer. During launch, the flwyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along eht flyer axis.
Abstract:
A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state. The wing assembly is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly is adapted to be launched from a ballistic delivery system such as an artillery cannon, and can thus reach a target quickly, without expending system energy stored within the flyer. During launch, the flyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along the flyer axis resulting from the launch. The flyer assembly is adapted to withstand the high g-load an high temperature environments of a cannon launch, and can tolerate a set-back g load of about 16,000 g.
Abstract:
A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state. The wing assembly is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly is adapted to be launched from a ballistic delivery system such as an artillery cannon, and can thus reach a target quickly, without expending system energy stored within the flyer. During launch, the flyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along the flyer axis resulting from the launch. The flyer assembly is adapted to withstand the high g-load and high temperature environments of a cannon launch, and can tolerate a set-back g load of about 16,000 g.