Abstract:
This invention is directed to a waterborne polyolefin composition which is useful as an adhesion promoter and is prepared by emulsifying non-oxidized, non-maleated, non-chlorinated, crystalline polyolefins and non-chlorinated, maleated, amorphous polyolefins in the presence of a surfactant, an amine and water.
Abstract:
Modified polyolefins are produced by reacting a functionalized polyolefin with one or more ethylenically unsaturated compounds having a functional group reactive with the functional group on the polyolefin. These modified polyolefins may then polymerize in the presence of a photoinitiator upon exposure to ultraviolet radiation and also have the capability of copolymerizing in the presence of a photoinitiator with other ethylenically unsaturated crosslinking agents upon exposure to ultraviolet radiation. These modified polyolefins may also contain pendant carboxyl groups, which have the propensity to form hydrophilic salts with amines, and therefore may be rendered water-dispersible. The modified polyolefins of the present invention significantly improve the adhesion of paints, inks, and adhesives to various plastic and metal substrates.
Abstract:
The invention describes water-resistant polymer compositions containing a sulphonated polyester and a triethanolamine titanate and methods of preparing water-resistant polymer compositions. The invention also describes water-resistant ink compositions and methods of preparing water-resistant ink compositions containing a sulphonated polyester, a triethanolamine titanate, a colorant and a solvent.
Abstract:
This invention is directed to a waterborne polyolefin composition which is useful as an adhesion promoter and is prepared by emulsifying non-oxidized, non-maleated, non-chlorinated, crystalline polyolefins and non-chlorinated, maleated, amorphous polyolefins in the presence of a surfactant, an amine and water.
Abstract:
Modified polyolefins are produced by reacting a functionalized polyolefin with one or more ethylenically unsaturated compounds having a functional group reactive with the functional group on the polyolefin. These modified polyolefins may then polymerize in the presence of a photoinitiator upon exposure to ultraviolet radiation and also have the capability of copolymerizing in the presence of a photoinitiator with other ethylenically unsaturated crosslinking agents upon exposure to ultraviolet radiation. These modified polyolefins may also contain pendant carboxyl groups, which have the propensity to form hydrophilic salts with amines, and therefore may be rendered water-dispersible. The modified polyolefins of the present invention significantly improve the adhesion of paints, inks, and adhesives to various plastic and metal substrates.
Abstract:
Provided is a facile three step process for preparing 2-phenylterephthalic acid starting with p-xylene, followed by alkylation, dehydrogenation, and oxidation of the methyl groups corresponding to the original p-xylene. The product, 2-phenylterephthalic acid, is useful as an intermediate in the synthesis of polyesters comprised of residues of 2-phenylterephthalic acid.
Abstract:
Modified polyolefins are produced by reacting a functionalized polyolefin with one or more ethylenically unsaturated compounds having a functional group reactive with the functional group on the polyolefin. These modified polyolefins may then polymerize in the presence of a photoinitiator upon exposure to ultraviolet radiation and also have the capability of copolymerizing in the presence of a photoinitiator with other ethylenically unsaturated crosslinking agents upon exposure to ultraviolet radiation. These modified polyolefins may also contain pendant carboxyl groups, which have the propensity to form hydrophilic salts with amines, and therefore may be rendered water-dispersible. The modified polyolefins of the present invention significantly improve the adhesion of paints, inks, and adhesives to various plastic and metal substrates.
Abstract:
Provided is a facile three step process for preparing 2-phenylterephthalic acid starting with p-xylene, followed by alkylation, dehydrogenation, and oxidation of the methyl groups corresponding to the original p-xylene. The product, 2-phenylterephthalic acid, is useful as an intermediate in the synthesis of polyesters comprised of residues of 2-phenylterephthalic acid.