Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.
Abstract:
An exoskeleton (100; 204; 304; 404; 504; 602; 702; 802; 902; 1002) includes a control system (120; 205; 305; 405; 505; 603; 703; 803; 903; 1003; 1010) which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist (202, 302, 402) and/or to an exoskeleton user (109; 201; 301; 401; 501; 601; 701; 801; 901; 1001). The feedback system can take various forms, including employing sensors (704; 804; 1004; 1010) to establish a feedback ready value and communicating the value through one or more light sources (206; 306; 503; 608) which can be in close proximity to joints of the exoskeleton joints.
Abstract:
An exoskeleton (100; 200) can be reconfigured, adjusted and/or controlled on the fly utilizing devices which fall into three categories, particularly including a swappable unactuated leg, lockable transverse and coronal hip rotations, and software controlled free joints. More specifically, the first device allows for the creation of a modular joint system in which individual exoskeleton joints (230; 231; 232; 233; 249) or limbs (112L; 112R) can be changed or swapped to optimize an exoskeleton for a particular user. The second device is concerned with mechanically controlling, such as locking and unlocking, joints thereby allowing, for example, an exoskeleton leg to pivot or not pivot in an axis that is not actuated.
Abstract:
An exoskeleton includes a control system which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist and/or to an exoskeleton user. The feedback system can take various forms, including employing sensors to establish a feedback ready value and communicating the value through one or more light sources which can be in close proximity to joints of the exoskeleton joints.
Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.
Abstract:
An exoskeleton (100; 200) can be reconfigured, adjusted and/or controlled on the fly utilizing devices which fall into three categories, particularly including a swappable unactuated leg, lockable transverse and coronal hip rotations, and software controlled free joints. More specifically, the first device allows for the creation of a modular joint system in which individual exoskeleton joints (230; 231; 232; 233; 249) or limbs (112L; 112R) can be changed or swapped to optimize an exoskeleton for a particular user. The second device is concerned with mechanically controlling, such as locking and unlocking, joints thereby allowing, for example, an exoskeleton leg to pivot or not pivot in an axis that is not actuated.