Abstract:
Use of an exoskeleton (100) by a wearer (130) of the exoskeleton (100) is improved through several features. In a first feature, the exoskeleton (100) enters a gait therapy preparation mode to prepare the wearer (130) for subsequent gait therapy. In a second feature, the exoskeleton (100) enters a balance training mode to help the wearer (130) learn to balance while wearing the exoskeleton (100). In a third feature, the exoskeleton (100) prompts the wearer (130) to shift weight and/or automatically shifts the wearer's weight in a center of pressure control mode. In a fourth feature, an element of variability is introduced into trajectory cycles performed by the exoskeleton (100) in a trajectory cycle mode. Overall, the various disclosed operating modes can be used individually or in various combinations to enhance the rehabilitation or training of the wearer (130).
Abstract:
A gait orthotic system includes a balance aid (120) and a gait orthotic device (100). The gait orthotic device (120) has a rigid attachment mechanism (125, 130) configured to securely and releasably couple the balance aid (120) to the gait orthotic device (100). When the balance aid (120) is coupled to the gait orthotic device (100), the gait orthotic device (100) is supported in a standing position so that a user of the gait orthotic device (100) is able to use his/her hands freely. When the balance aid (120) is not coupled to the gait orthotic device (100), the user is able to use the balance aid (120) for locomotion. In certain embodiments, the balance aid (120) is a forearm crutch, a walker or a cane, while the rigid attachment mechanism (125, 130) is a clamp with an over-center latch (510).
Abstract:
An exoskeleton (100; 204; 304; 404; 504; 602; 702; 802; 902; 1002) includes a control system (120; 205; 305; 405; 505; 603; 703; 803; 903; 1003; 1010) which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist (202, 302, 402) and/or to an exoskeleton user (109; 201; 301; 401; 501; 601; 701; 801; 901; 1001). The feedback system can take various forms, including employing sensors (704; 804; 1004; 1010) to establish a feedback ready value and communicating the value through one or more light sources (206; 306; 503; 608) which can be in close proximity to joints of the exoskeleton joints.
Abstract:
An operator (170) supervising a wearer (130) of an exoskeleton (100, 100') is verified by performing a verification routine on the operator (170) using the exoskeleton (100, 100'). If the verification routine is unsuccessful, the exoskeleton (100, 100') is caused to follow a pre- established response routine. If the verification routine is successful, movement of the exoskeleton (100, 100') is allowed.
Abstract:
A lower extremity orthosis is configured to be coupled to across at least one joint of a person for gait assistance and can incorporate knee (261), thigh (301; 401), hip (601; 701) and ankle/foot (801; 821) assistive orthotic devices which can be used in various combinations to aid in the rehabilitation and restoration of muscular function in patients with impaired muscular function or control.
Abstract:
An ambulatory exoskeleton can be selectively operated in at least two different modes, with one mode constituting an unworn propulsion mode, used when the exoskeleton is not worn by a user, and another mode constituting a default or worn propulsion mode, used when the exoskeleton is worn by a user. With this arrangement, a physical therapist, or other operator, wishing to move an - unworn exoskeleton, can balance the unworn exoskeleton, while simultaneously utilizing a control system and actuators; of the exoskeleton to propel the unworn exoskeleton. Therefore, the exoskeleton walks by taking steps forward, as commanded by the operator using any of a plurality of input arrangements, while the operator balances and steers the exoskeleton by physically guiding the exoskeleton using a handle or other interaction surface of the exoskeleton.
Abstract:
A powered orthotic system, such as an exoskeleton (100), is employed for overground rehabilitation purposes by adapting and adjusting to real-time needs in a rehabilitation situation whereby the system can be initially controlled to perform gait functions for a wearer (109) based on a predetermined level of assistance but the predetermined level of assistance can be varied, based on one or more rehabilitation parameters or specific needs of the wearer (109) undergoing therapy, through the application and adjustment of appropriate variables associated with operation of the system.
Abstract:
An exoskeleton (100; 200) can be reconfigured, adjusted and/or controlled on the fly utilizing devices which fall into three categories, particularly including a swappable unactuated leg, lockable transverse and coronal hip rotations, and software controlled free joints. More specifically, the first device allows for the creation of a modular joint system in which individual exoskeleton joints (230; 231; 232; 233; 249) or limbs (112L; 112R) can be changed or swapped to optimize an exoskeleton for a particular user. The second device is concerned with mechanically controlling, such as locking and unlocking, joints thereby allowing, for example, an exoskeleton leg to pivot or not pivot in an axis that is not actuated.
Abstract:
A lower extremity orthotic control system determines a movement desired by a user, particularly with a user employing gestures or other signals to convey or express their intent to the system, and automatically regulates the sequential operation of powered lower extremity orthotic components. In a particular application, the orientation of a stance leg is used to determine when the user wants to initiate a step, as well as when the user is in a safe position from which to take a step. The invention has particular applicability for use in enabling a paraplegic user (200) to walk through a controlled operation of a human exoskeleton (100) coupled to the user's lower limbs (205). A controller (220) receives inputs regarding a motion desired by the user (200), determines the desired motion and then controls the movement of the user's legs or limbs (205) through actuation of the exoskeleton (100).
Abstract:
Use of an exoskeleton by a wearer of the exoskeleton is improved through several features. In a first feature, the exoskeleton enters a gait therapy preparation mode to prepare the wearer for subsequent gait therapy. In a second feature, the exoskeleton enters a balance training mode to help the wearer learn to balance while wearing the exoskeleton. In a third feature, the exoskeleton prompts the wearer to shift weight and/or automatically shifts the wearer's weight in a center of pressure control mode. In a fourth feature, an element of variability is introduced into trajectory cycles performed by the exoskeleton in a trajectory cycle mode. Overall, the various disclosed operating modes can be used individually or in various combinations to enhance the rehabilitation or training of the wearer.