Abstract:
Novel compositions for removing impurities such as, protein aggregates, from a sample containing a protein of interest, e.g., an antibody. Such compositions can be used prior to the virus filtration step during protein purification, to remove aggregates and protect the virus filter from fouling, therefore improving virus filter capacity. A porous solid support including a co-polymer having at least two monomers, wherein at least one of the monomers comprises acrylamide and at least a second monomer comprises a hydrophobic binding group, where the solid support selectively binds protein aggregates, thereby to separate the monomeric protein of interest from the protein aggregates. The method can be performed under neutral to high pH and high conductivity conditions.
Abstract:
Embodiments described herein relate to electrospun nanofiber ultrafiltration membrane compositions capable of operating in tangential filtration mode and methods of using the same.
Abstract:
Adsorptive media for chromatography, particularly ion-exchange chromatography, derived from a shaped fiber. In certain embodiments, the functionalized shaped fiber presents a fibrillated or ridged structure which greatly increases the surface area of the fibers when compared to ordinary fibers. Also disclosed herein is a method to add surface pendant functional groups that provides cation-exchange or anion-exchange functionality to the high surface area fibers. This pendant functionality is useful for the ion-exchange chromatographic purification of biomolecules, such as monoclonal antibodies (mAbs).
Abstract:
Devices for removing extractables downstream from a filter, including a tangential flow filter, the filter housed within a housing; and an adsorber housed within the frame and downstream of the filter, the adsorber containing media for removing extractables, wherein extractables are removed from a permeate side of the filter without contacting a product of interest, are disclosed.
Abstract:
The present invention relates to improved processes and systems for purification of biological molecules, where the processes can be performed in a continuous manner.
Abstract:
The present invention relates to novel and improved methods for the purification of biomolecules. In particular, the present invention relates to methods of protein purification which employ a porous solid support modified with a charged fluorocarbon composition.
Abstract:
The present invention relates to improved processes and systems for purification of biological molecules, where the processes can be performed in a continuous manner.
Abstract:
Adsorptive media for chromatography, particularly ion-exchange chromatography, derived from a shaped fiber. In certain embodiments, the functionalized shaped fiber presents a fibrillated or ridged structure which greatly increases the surface area of the fibers when compared to ordinary fibers. Also disclosed herein is a method to add surface pendant functional groups that provides cation-exchange or anion-exchange functionality to the high surface area fibers. This pendant functionality is useful for the ion-exchange chromatographic purification of biomolecules, such as monoclonal antibodies (mAbs).