Abstract:
This application discloses a light-emitting device with narrow dominant wavelength distribution and a method of making the same. The light-emitting device with narrow dominant wavelength distribution at least includes a substrate, a plurality of light-emitting stacked layers on the substrate, and a plurality of wavelength transforming layers on the light-emitting stacked layers, wherein the light-emitting stacked layer emits a first light with a first dominant wavelength variation; the wavelength transforming layer absorbs the first light and converts the first light into the second light with a second dominant wavelength variation; and the first dominant wavelength variation is larger than the second dominant wavelength variation.
Abstract:
A phosphor, having a general formula of K2[Si1-xGex]yF6:Mn1-y4+. The phosphor is excited to emit a light having a first main emission peak with a first maximum emission intensity and a first dominant wavelength, wherein a relative emission intensity S of the light of the phosphor is constantly greater than 85% across an temperature of the phosphor between 300 K and 470 K during operation, wherein S=(IT/IRT)*100%, IRT and IT are the first maximum emission intensity when the temperature of the phosphor is at 300 K and T during operation respectively, and 300 K
Abstract:
Provided is a metal oxonitridosilicate phosphor of a general formula M5−z−a−bAl3+xSi23−xN37−x−2aOx+2a:Euz,Mnb, wherein M is one or more alkaline earth metals; 0; 0; 0
Abstract:
An embodiment of the present disclosure discloses a phosphor material and a manufacturing method thereof. The general composition of the phosphor material is A2-xMO4:Eux, wherein A includes a single element or at least two elements selected from the group consisting of Ca, Sr, and Ba, M is Si, Ge or combination thereof, wherein x is greater than 0.01 and 2-x>0. The phosphor material can be excited by a first excitation wavelength and emit a first emission spectrum and, excited by a second excitation wavelength and emit a second emission spectrum. The first excitation wavelength is different from the second excitation wavelength, and the first emission spectrum is different from the second emission spectrum.
Abstract:
The present disclosure provides a wavelength conversion structure, a light-emitting apparatus, and a display device using the wavelength conversion structures. The wavelength conversion structure includes a porous inorganic shell and a plurality of organic complex phosphor particles filled in the porous inorganic shell. Wherein the plurality of organic complex phosphor particles is capable of being excited to emit light with a peak wavelength in the visible light range.
Abstract:
A light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer, and an active layer emitting an UV light, formed between the first semiconductor layer and the second semiconductor layer; a first transparent conductive layer formed on the second semiconductor layer, the first transparent conductive layer including metal oxide; and a second transparent conductive layer formed on the first transparent conductive layer, the second transparent conductive layer including graphene, wherein the first transparent conductive layer is continuously formed over a top surface of the second semiconductor layer, the first transparent conductive layer comprises a thickness smaller than 10 nm.
Abstract:
A phosphor, having a general formula of K2[Si1-xGex]yF6:Mn1-y4+. The phosphor is excited to emit a light having a first main emission peak with a first maximum emission intensity and a first dominant wavelength, wherein a relative emission intensity S of the light of the phosphor is constantly greater than 85% across an temperature of the phosphor between 300 K and 470 K during operation, wherein S=(IT/IRT)*100%, IRT and IT are the first maximum emission intensity when the temperature of the phosphor is at 300 K and T during operation respectively, and 300 K
Abstract:
This disclosure discloses a wavelength converting material. The wavelength converting material comprises a plurality of wavelength converting particles, the wavelength converting particles having an average particle size greater than 5 μm, and wherein each of the wavelength converting particles has a particle size. 90% of the wavelength converting particles have the particle size smaller than a μm; 50% of the wavelength converting particles have the particle size smaller than b μm; and 10% of the wavelength converting particles have the particle size smaller than c μm; wherein (a−c)/b≦0.5.