Abstract:
Cermets are provided in which the ceramic phase is selected from the group consisting of Cr 23 C 6 , Cr 7 C 3 , Cr 3 C 2 and mixtures thereof. The binder phase is selected from certain specified Ni/Cr alloys and certain Fe/Ni/Cr alloys. These cermets are particularly useful in protecting surfaces from erosion at high temperatures.
Abstract translation:提供了陶瓷相选自Cr23C6,Cr7C3,Cr3C2及其混合物的金属陶瓷。 粘结相选自某些特定的Ni / Cr合金和某些Fe / Ni / Cr合金。 这些金属陶瓷特别适用于在高温下保护表面免受侵蚀。
Abstract:
Cermets are provided in which a substantially stoichiometric metal carbide ceramic phase along with a reprecipitated metal carbide phase, represented by the formula M X C Y , is dispersed in a metal binder phase. In M x C y M is Cr, Fe, Ni, Co, Si, Ti, Zr, Hf, V, Nb, Ta, Mo or mixtures thereof, x and y are whole or fractional numerical values with x ranging from 1 to 30 and y from 1 to 6. These cermets are particularly useful in protecting surfaces from erosion and corrosion at high temperatures.
Abstract:
Methods disclosed herein include using additive manufacturing to create a joint between a first metallic material and a second metallic material that is different from the first metallic material, wherein the porosity of the joint is less than about 0.1 percent by volume measured according to ASTM B-962. The additive manufacturing can be performed such that no intermetailic brittle phase forms between the first metallic material and the second metallic material.
Abstract:
Improved steel compositions and methods of making the same are provided. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced strength and/or performance at cryogenic temperatures, and methods for fabricating high manganese steel compositions having enhanced strength and/or performance at cryogenic temperatures. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: strength, toughness, elastic modulus, thermal expansion coefficient and/or thermal conductivity. In general, the present disclosure provides high manganese steels tailored to resist wear and/or deformation at cryogenic temperatures.
Abstract:
A cermet composition and method for its manufacture represented by the formula (PQ) (RS ) comprising: a ceramic phase (PQ) and a binder phase (RS ) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce.
Abstract:
The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Si, Mn, Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and mixtures thereof, Q is nitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al, Si, and Y, and at least one reactive wetting aliovalent element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and mixtures thereof.
Abstract:
The present invention relates to ferrous alloys with high strength, cost-effective corrosion resistance and cracking resistance for refinery service environments, such as amine service under sweet or sour environments. More specifically, the present invention pertains to a type of ferrous manganese alloyed steels for high strength and cracking resistance and methods of making and using the same.
Abstract:
Multimodal cermet compositions comprise a multimodal grit distribution of the ceramic phase. The compositions include a) a ceramic phase and b) a metal binder phase, wherein the ceramic phase is a metal boride with a multimodal distribution of particles, wherein a metal is a Group IV, V, or Vl metal, and wherein the metal binder phase comprises (i) Fe, Ni, Co or Mn and (ii) Cr, Al, Si, Y or Ti. The method of making multimodal boride cermets includes mixing multimodal ceramic phase particles, pressing the particle, liquid phase sintering of the compresses mixture at elevated temperatures, and finally cooling the multimodal cermet composition. Advantages of the multimodal cermets are high packing density, high fracture toughness and improved erosion resistance at up to 100 deg C. The multimodal cermets are suitable in high temperature erosion/corrosion chemical and petroleum environments.
Abstract:
The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Mn and mixtures thereof, Q is carbonitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
Abstract:
A cermet composition represented by the formula (PQ)(RS) comprising : a ceramic phase (PQ) and binder phase (RS) wherein, P is at least one metal selected from the group consisting of Group IV, Group V, Group VI elements, Q is boride, R is selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.