Abstract:
Methods for detecting chromosomal aneuploidy of a specified chromosome or chromosome region are provided. Also provided are methods for genetic analysis of heterogeneously sized chromosomal DNA fragments. The methods are useful for non-invasive prenatal diagnosis and other genetic analyses.
Abstract:
This invention provides technology for transdifferentiating cells from one cell type to another. The cells are cultured with one or more vector-free gene regulator oligonucleotides concurrently or in succession, and then harvested when cell markers or the morphology of the culture shows that transdifferentiation is complete. Suitable gene regular oligonucleotides include microRNAs and messenger RNAs that encode a differentiation factor. Conditions for transdifferentiation can be optimized by dividing cells into different culture chambers of a microfluidic device. Cells are cultured with different additives in each chamber, and then compared. Transdifferentiated cells produced according to this invention can provide a consistent source of tissue for use in regenerative medicine.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
Abstract:
High throughput methods are used that combine the features of using a matrix-type microfluidic device, labeled nucleic acid probes, and homogenous assays to detect and/or quantify nucleic acid analytes. The high throughput methods are capable of detecting nucleic acid analyes with high PCR and probe specificity, producing a low fluorescence background and therefore, a high signal to noise ratio. Additionally, the high throughput methods are capable of detecting low copy number nucleic acid analyte per cell.
Abstract:
In certain embodiments, the present invention provides a way of "digitally" marking different the alleles of different chromosomes by using a transposase to insert differently barcoded transposons into genomic DNA before further analysis. According to this method, each allele becomes marked with a unique pattern of transposon barcodes. Because each unique pattern of transposon barcodes identifies a particular allele, the method facilitates determinations of ploidy and copy number variation, improves the ability to discriminate among homozygotes, heterozygotes, and patterns arising from sequencing errors, and allows loci separated by uninformative stretches of DNA to be identified as linked loci, thereby facilitating haplotype determinations. Also provided is a novel artificial transposon end that includes a barcode sequence in two or more positions that are not essential for transposition.
Abstract:
The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay.
Abstract:
The present invention provides for microfluidic devices and methods for their use. The invention further provides for apparatus and systems for using the microfluidic devices, analyze reactions carried out in the microfluidic devices, and systems to generate, store, organize, and analyze data generated from using the microfluidic devices. The invention further provides methods of using and making microfluidic systems and devices which, in some embodiments, are useful for crystal formation. In one embodiment, an apparatus includes a platen having a platen face with one or more fluid ports therein. The fluid ports spatially correspond to one or more wells on a surface of the microfluidic device. A platform for holding the microfluidic device relative to the platen is included, and a platen actuator for urging the platen against the microfluidic device so that at least one of the fluid ports of the platen is urged against one of the wells to form a pressure chamber comprising the well and the port, so that when pressurized fluid is introduced or removed into or from the pressure chamber through one of the ports, fluid pressure is changed therein.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.