Abstract:
The semiconductor memory device of the present invention has a memory cell array with a plurality of memory cells disposed therein, a refresh request circuit outputting to an outside a refresh request signal requesting a refresh operation, a processing circuit decoding information relating to an external access request to the memory cell array, and instructing an operation to be executed in the memory cell array based on a decoded result, and an array control circuit executing an operation for the memory cell array based on an instruction from the processing circuit. The external access request includes a refresh execution request being a response to the refresh request signal.
Abstract:
A semiconductor memory device comprises an internal voltage generator (18) which, when activated, generates an internal voltage to be supplied to an internal circuit. Operating the internal voltage generator (18) consumes a predetermined amount of the power. In response to a control signal from the exterior, an entry circuit (14) inactivates the internal voltage generator (18). When the internal voltage generator (18) is inactivated, the internal voltage is not generated, thereby reducing the power consumption. By the control signal from the exterior, therefore, a chip can easily enter a low power consumption mode. During the low power consumption mode, an external voltage supplying circuit supplies a power supply voltage supplied from the exterior as the internal voltage to a predetermined internal circuit. Even when the internal voltage generator (18) is inactivated, therefore, the power supply voltage is supplied to the power supply terminal of each internal circuit, which results in preventing a leak path. During low power consumption mode, refresh of the dynamic memory cells is prohibited.
Abstract:
A semiconductor memory device, comprising a memory cell array with a plurality of memory cells storing data disposed therein; a processing circuit decoding command information relating to an external access request to said memory cell array supplied from an outside and address information, and instructing an operation to be executed in said memory cell array based on a decoded result; and an array control circuit executing an operation for said memory cell array based on an instruction from said processing circuit; wherein when the command information relating to the external access request and the address information are in predetermined combination, said processing circuit instructs to execute a refresh operation to hold data stored in the memory cells in said memory cell array.
Abstract:
A semiconductor memory device comprises an internal voltage generator (18) which, when activated, generates an internal voltage to be supplied to an internal circuit. Operating the internal voltage generator (18) consumes a predetermined amount of the power. In response to a control signal from the exterior, an entry circuit (14) inactivates the internal voltage generator (18). When the internal voltage generator (18) is inactivated, the internal voltage is not generated, thereby reducing the power consumption. By the control signal from the exterior, therefore, a chip can easily enter a low power consumption mode. During the low power consumption mode, an external voltage supplying circuit supplies a power supply voltage supplied from the exterior as the internal voltage to a predetermined internal circuit. Even when the internal voltage generator (18) is inactivated, therefore, the power supply voltage is supplied to the power supply terminal of each internal circuit, which results in preventing a leak path. For low power mode, data are saved from a dynamic memory to a flash memory. During low power mode, refresh operation of the dynamic memory is prohibited.