Abstract:
The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
Abstract:
The invention provides non- naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
Abstract:
The invention is directed to a non-naturally occurring microbial organism comprising a first attenuation of a succinyl-CoA synthetase or transferase and at least a second attenuation of a succinyl-CoA converting enzyme or a gene encoding a succinate producing enzyme within a multi-step pathway having a net conversion of succinyl-CoA to succinate.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.
Abstract:
Provided herein is a non-naturally occurring microbial organism having an isopropanol pathway and comprising at least one exogenous nucleic acid encoding an isopropanol pathway enzyme. In certain embodiments, the pathway includes an enzyme selected from a 4-hydroxybutyryl-CoA dehydratase, a crotonase, a 3-hydroxybutyryl-CoA dehydrogenase, an acetoacetyl-CoA synthetase, an acetyl-CoA:acetoacetate-CoA transferase, an acetoacetyl-CoA hydrolase, an acetoacetate decarboxylase, and an acetone reductase. Also provided herein is anon-naturally occurring microbial organism having an n-butanol pathway and comprising at least one exogenous nucleic acid encoding an n-butanol pathway enzyme. Other non-naturally occurring microbial organism having n-butanol or isobutanol pathways are also provided herein. In certain embodiments, isobutanol pathways utilizing reverse TCA and/or reducing equivalents from CO and/or hydrogen are used to enhance product yields. The organisms provided herein can be cultured to produce isopropanol, n-butanol, or isobutanol.
Abstract:
Provided herein are non-naturally occurring microbial organisms having a FaldFP, a FAP and/or metabolic modifications which can further include a MMP, a MOP, a hydrogenase and/or a CODH. These microbial organisms can further include a butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol.
Abstract:
The invention provides a non-naturally occurring microbial organism having a methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a methacrylic acid pathway. The invention additionally provides a method for producing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2- hydroxyisobutyrate. The method can include culturing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a methacrylic acid pathway enzyme in a sufficient amount to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate, under conditions and for a sufficient period of time to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate.
Abstract:
The invention provides non-naturally occurring microbial organisms having a (2- hydroxy-3-methyl-4-oxobutoxy) phosphonate (2H3M40P) pathway, p-toluate pathway, and/or terephthalate pathway. The invention additionally provides methods of using such organisms to produce 2H3M40P, p-toluate or terephthalate. Also provided herein are processes for isolating bio-based aromatic carboxylic acid, in particular, p-toluic acid or terephthalic acid, from a culture medium, wherein the processes involve contacting the culture medium with sufficient carbon dioxide (C02) to lower the pH of the culture medium to produce a precipitate comprised of the aromatic carboxylic acid.
Abstract:
The invention provides non-naturally occurring microbial organisms containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol pathways comprising at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol. The invention additionally provides methods of using such microbial organisms to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol, by culturing a non- naturally occurring microbial organism containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-l-ol pathways as described herein under conditions and for a sufficient period of time to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a reductive TCA or Wood-Ljungdahl pathway and comprising at least one exogenous nucleic acid encoding said pathway enzymes expressed in a sufficient amount to enhance carbon flux through acetyl-CoA. Also provided herein is a method for enhancing the availability of reducing equivalents in the presence of carbon monoxide or hydrogen, and can include culturing this organism for a sufficient period of time to produce a product.