Abstract:
The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a 1,3-butanediol (1,3 -BDO) pathway and comprising at least one exogenous nucleic acid encoding a 1,3 -BDO pathway enzyme expressed in a sufficient amount to produce 1,3 -BDO. In some embodiments, the pathway includes reducing equivalents from CO or hydrogen. In certain embodiments, a 1,3-BDO pathway proceeds by way of central metabolites pyruvate, succinate or alpha-ketoglutarate. Also provided herein is a method for producing 1,3-BDO, includes culturing such microbial organisms under conditions and for a sufficient period of time to produce 1,3-BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4- hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4- hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4- hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.
Abstract:
The invention provides a non-naturally occurring microbial organism having a 2- hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a 2- hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The invention additionally provides a method for producing 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid. The method can include culturing a 2-hydroxyisobutyric acid, 3- hydroxyisobutyric acid or methacrylic acid producing microbial organism expressing at least one exogenous nucleic acid encoding a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway enzyme in a sufficient amount and culturing under conditions and for a sufficient period of time to produce 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid.
Abstract:
Provided herein are non-naturally occurring microbial organisms having a FaldFP, a FAP and/or metabolic modifications which can further include a MMP, a MOP, a hydrogenase and/or a CODH. These microbial organisms can further include a butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol.
Abstract:
The invention provides a non-naturally occurring microbial organism having a methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a methacrylic acid pathway. The invention additionally provides a method for producing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2- hydroxyisobutyrate. The method can include culturing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a methacrylic acid pathway enzyme in a sufficient amount to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate, under conditions and for a sufficient period of time to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a reductive TCA or Wood-Ljungdahl pathway and comprising at least one exogenous nucleic acid encoding said pathway enzymes expressed in a sufficient amount to enhance carbon flux through acetyl-CoA. Also provided herein is a method for enhancing the availability of reducing equivalents in the presence of carbon monoxide or hydrogen, and can include culturing this organism for a sufficient period of time to produce a product.
Abstract:
The invention is directed to a non-naturally occurring microbial organism comprising a first attenuation of a succinyl-CoA synthetase or transferase and at least a second attenuation of a succinyl-CoA converting enzyme or a gene encoding a succinate producing enzyme within a multi-step pathway having a net conversion of succinyl-CoA to succinate.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.
Abstract:
Provided herein is a non-naturally occurring microbial organism having an isopropanol pathway and comprising at least one exogenous nucleic acid encoding an isopropanol pathway enzyme. In certain embodiments, the pathway includes an enzyme selected from a 4-hydroxybutyryl-CoA dehydratase, a crotonase, a 3-hydroxybutyryl-CoA dehydrogenase, an acetoacetyl-CoA synthetase, an acetyl-CoA:acetoacetate-CoA transferase, an acetoacetyl-CoA hydrolase, an acetoacetate decarboxylase, and an acetone reductase. Also provided herein is anon-naturally occurring microbial organism having an n-butanol pathway and comprising at least one exogenous nucleic acid encoding an n-butanol pathway enzyme. Other non-naturally occurring microbial organism having n-butanol or isobutanol pathways are also provided herein. In certain embodiments, isobutanol pathways utilizing reverse TCA and/or reducing equivalents from CO and/or hydrogen are used to enhance product yields. The organisms provided herein can be cultured to produce isopropanol, n-butanol, or isobutanol.