Abstract:
A resuscitation system for use by a rescuer for resuscitating a patient, comprising at least two high-voltage defibrillation electrodes, a first electrical unit comprising circuitry for providing resuscitation prompts to the rescuer, a second electrical unit separate from the first unit and comprising circuitry for providing defibrillation pulses to the electrodes, and circuitry for providing at least one electrical connection between the first and second units. In another aspect, at least two electrical therapy electrodes adapted to be worn by the patient for extended periods of time, circuitry for monitoring the ECG of the patient, an activity sensor adapted to be worn by the patient and capable of providing an output from which the patient's current activity can be estimated, and at least one processor configured for estimating the patient's current activity by analyzing the output of the activity sensor, analyzing the ECG of the patient, and determining whether electrical therapy should be delivered to the electrodes.
Abstract:
A system including a sensor interface coupled to a processor. The sensor interface is configured to receive and process an analog electrocardiogram signal of a subject and provide a digitized electrocardiogram signal sampled over a first time period and a second time period that is subsequent to the first time period. The processor is configured to receive the digitized electrocardiogram signal, to analyze a frequency domain transform of the digitized electrocardiogram signal sampled over the first and second time periods and determine first and second metrics indicative of metabolic state of a myocardium of the subject during the first and second time periods, respectively, to compare the first and second metrics to determine whether the metabolic state of the myocardium of the subject is improving, and to indicate administration of an intervention to the subject in response to a determination that the metabolic state is not improving.
Abstract:
This document relates to systems and techniques for the treatment of a cardiac arrest victim via electromagnetic stimulation of physiologic tissue.
Abstract:
This document relates to systems and techniques for the treatment of a cardiac arrest victim via electromagnetic stimulation of physiologic tissue.
Abstract:
This document relates to systems and techniques for the treatment of a cardiac arrest victim via electromagnetic stimulation of physiologic tissue.
Abstract:
A method of automatically determining which type of treatment is most appropriate for (or the physiological state of) a patient. The method comprises transforming one or more time domain measurements from the patient into frequency domain data representative of the frequency content of the time domain measurements; processing the frequency domain data to form a plurality of spectral bands, the content of a spectral band representing the frequency content of the measurements within a frequency band; forming a weighted sum of the content of the spectral bands, with different weighting coefficients applied to at least some of the spectral bands; determining the type of treatment (or physiological state) based on the weighted sum.
Abstract:
Apparatus for automatic delivery of chest compressions and ventilation to a patient, the apparatus including: a chest compressing device configured to deliver compression phases during which pressure is applied to compress the chest and decompression phases during which approximately zero pressure is applied to the chest a ventilator configured to deliver positive, negative, or approximately zero pressure to the airway; control circuitry and processor, wherein the circuitry and processor are configured to cause the chest compressing device to repeatedly deliver a set containing a plurality of systolic flow cycles, each systolic flow cycle comprising a systolic decompression phase and a systolic compression phase, and at least one diastolic flow cycle interspersed between sets of systolic flow cycles, each diastolic flow cycle comprising a diastolic decompression phase and a diastolic compression phase, wherein the diastolic decompression phase is substantially longer than the systolic decompression phase.
Abstract:
Apparatus for automatic delivery of chest compressions and ventilation to a patient, the apparatus including: a chest compressing device configured to deliver compression phases during which pressure is applied to compress the chest and decompression phases during which approximately zero pressure is applied to the chest a ventilator configured to deliver positive, negative, or approximately zero pressure to the airway; control circuitry and processor, wherein the circuitry and processor are configured to cause the chest compressing device to repeatedly deliver a set containing a plurality of systolic flow cycles, each systolic flow cycle comprising a systolic decompression phase and a systolic compression phase, and at least one diastolic flow cycle interspersed between sets of systolic flow cycles, each diastolic flow cycle comprising a diastolic decompression phase and a diastolic compression phase, wherein the diastolic decompression phase is substantially longer than the systolic decompression phase.
Abstract:
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR).