Abstract:
This invention relates to an electron multiplier unit and others enabling cascade multiplication of electrons through successive emission of secondary electrons in multiple stages in response to incidence of primary electrons. The electron multiplier unit has a first support member provided with an inlet aperture for letting primary electrons in, and a second support member located so as to face the first support member. These first and second support members hold an electron multiplication section for the cascade multiplication and an anode. The electron multiplication section comprises at least a first dynode of a box type and a second dynode having a reflection type secondary electron emission surface located so as to face the first dynode and arranged to receive secondary electrons from the first dynode and to emit secondary electrons to a side where the first dynode is located. The anode is located at a position where the secondary electrons emitted from the first dynode do not directly arrive, and the second dynode alters a travel path of secondary electrons so as to be kept in a space between the first and second support members.
Abstract:
The present invention relates to a photomultiplier having a structure that enables to perform high gain and satisfy higher required characteristics. In the photomultiplier, an electron-multiplying unit accommodated in a sealed container comprises a focusing electrode, an accelerating electrode, a dynode unit, and an anode. Particularly, at least the accelerating electrode and dynode unit are held unitedly in a state that at least a first-stage dynode and a second-stage included in the dynode unit are opposite directly to the accelerating electrode not through a conductive material. A conventional metal disk for supporting directly dynodes which are set to the same potential as that of the first-stage dynode is not placed between the accelerating electrode and dynode unit; thus, variations of the transit time of electrons may be drastically reduced while the electrons reach from the cathode to the second-stage dynode via the first-stage dynode.
Abstract:
In an image intensifier comprising an entrance faceplate, made of a material transparent to light, having a photoelectric surface, formed on a surface opposite to a light entrance surface, for photoelectrically converting incident light into an electron; and an optical fiber block (4), constituted by a plurality of optical fibers bundled together, having a phosphor face (46) at an end face (44) of each optical fiber on the light entrance side, for emitting light in response to the electron incident thereon; the photoelectric surface of the entrance faceplate and the phosphor face of the optical fiber block opposing each other, while a vacuum atmosphere being formed therebetween; the optical fiber block is provided with a pit in which an end face (44) of a core portion (42) of each optical fiber is recessed from an end face of a cladding portion (43) thereof, the bottom of the pit is filled with a phosphor, the surface of this phosphor is provided with a metal back layer, the cladding portion projects from the surface of the phosphor toward the entrance surface by a predetermined height, and the projecting surface of the cladding portion is provided with a metal film (47).
Abstract:
Photomultiplier tube (1) having a photocathode (5) for emitting photoelectrons to an electron multiplication portion (6). The electron multiplication portion (6) includes a first dynode (Dy1) and a second dynode (Dy2) in confrontation with the first dynode (Dy1). The second dynode (Dy2) has a secondary electron emission which is substantially saturated with respect to an electric voltage applied thereto, or which is fixed with respect to electrons that are originated from the first dynode (Dy1) and other electrons that are reflected off the first dynode (Dy1).
Abstract:
With the outer wall surface (2b) of a metal-made side tube (2) of a photomultiplier (1) flush with the edge face (4b) of a stem plate (4), the side tube (2) is secured to the stem plate (4) by welding, and thereby there is no projection like a flange at the bottom of the photomultiplier (1), reducing the size of the photomultiplier (1). Therefore, though it is difficult to perform resistance welding, the outside dimensions of the photomultiplier (1) can be decreased, and multiple photomultipliers (1) can densely abut to one another in such a way that the side tubes (2) are put together even if the photomultipliers (2) are arranged when applied. Hence, high-density arrangement of photomultipliers (1) are realized by assembling metallic stem plate (4) and the side tube (2) by, for example, laser welding.
Abstract:
A photomultiplier for converting an incident weak light into multiplied electrons to thereby output an electrical signal corresponding to the intensity of the incidence light. The photomultiplier comprises a photocathode for emitting primary electrons; plural dynodes for emitting secondary electrons in response to incident of the primary electrons and multiplying first secondary electrons passing between the dynodes; and shield means for preventing second secondary electrons emitted from a first dynode of the dynodes toward the photocathode from returning to the dynodes, thereby to reduce the generation of a residual pulse currents caused by the second secondary electrons and to accurately detect a main pulse current caused by the first secondary electrons.
Abstract:
A hood electrode attached to a tip portion of a target is provided with an electron passage port widening on the side opposite from an x-ray emitting window, so that electrons emitted from an electron gun are made incident on the front end face of a target at a position on the x-ray emission side, whereby the distance between the x-ray generating position and the x-ray emitting window can be shortened.
Abstract:
A hood electrode attached to a tip portion of a target is provided with an electron passage port widening on the side opposite from an x-ray emitting window, so that electrons emitted from an electron gun are made incident on the front end face of a target at a position on the x-ray emission side, whereby the distance between the x-ray generating position and the x-ray emitting window can be shortened.
Abstract:
In this photomultiplier tube (1), light incident on a light-receiving faceplate (3) is converted into photoelectrons by a photosensitive surface (3a), and the photoelectrons strike a dynode (4) to emit many secondary electrons. The secondary electrons are then collected by a mesh-like anode (5). Since the anode (5) is disposed to be parallel to the photosensitive surface (3a), the photoelectrons emerging from the photosensitive surface (3a) can easily pass through a mesh portion (5a), and many photoelectrons can be made to strike the dynode (4). As the number of photoelectrons incident on the dynode (4) increases, the number of secondary electrons from the dynode (4) increases. This improves the gain characteristics of the photomultiplier tube (1). In addition, since the anode (5) is formed to have a flat shape conforming to the shape of the photosensitive surface (3a), the mesh-like anode (5) can be easily molded. Since a secondary electron emission surface (4a) of the dynode (4) is tilted with respect to the anode (5), photoelectrons having passed through the anode (5) obliquely strike the secondary electron emission surface (4a) of the dynode (4). As a consequence, the number of secondary electrons emitted can be increased. This also improves the gain characteristics of the photomultiplier tube (2).
Abstract:
A hood electrode attached to a tip portion of a target is provided with an electron passage port widening on the side opposite from an x-ray emitting window, so that electrons emitted from an electron gun are made incident on the front end face of a target at a position on the x-ray emission side, whereby the distance between the x-ray generating position and the x-ray emitting window can be shortened.