Abstract:
In an image intensifier comprising an entrance faceplate, made of a material transparent to light, having a photoelectric surface, formed on a surface opposite to a light entrance surface, for photoelectrically converting incident light into an electron; and an optical fiber block (4), constituted by a plurality of optical fibers bundled together, having a phosphor face (46) at an end face (44) of each optical fiber on the light entrance side, for emitting light in response to the electron incident thereon; the photoelectric surface of the entrance faceplate and the phosphor face of the optical fiber block opposing each other, while a vacuum atmosphere being formed therebetween; the optical fiber block is provided with a pit in which an end face (44) of a core portion (42) of each optical fiber is recessed from an end face of a cladding portion (43) thereof, the bottom of the pit is filled with a phosphor, the surface of this phosphor is provided with a metal back layer, the cladding portion projects from the surface of the phosphor toward the entrance surface by a predetermined height, and the projecting surface of the cladding portion is provided with a metal film (47).
Abstract:
In an image intensifier comprising an entrance faceplate, made of a material transparent to light, having a photoelectric surface, formed on a surface opposite to a light entrance surface, for photoelectrically converting incident light into an electron; and an optical fiber block (4), constituted by a plurality of optical fibers bundled together, having a phosphor face (46) at an end face (44) of each optical fiber on the light entrance side, for emitting light in response to the electron incident thereon; the photoelectric surface of the entrance faceplate and the phosphor face of the optical fiber block opposing each other, while a vacuum atmosphere being formed therebetween; the optical fiber block is provided with a pit in which an end face (44) of a core portion (42) of each optical fiber is recessed from an end face of a cladding portion (43) thereof, the bottom of the pit is filled with a phosphor, the surface of this phosphor is provided with a metal back layer, the cladding portion projects from the surface of the phosphor toward the entrance surface by a predetermined height, and the projecting surface of the cladding portion is provided with a metal film (47).
Abstract:
Eine Abbildungseinheit umfasst eine MCP, einen fluoreszierenden Körper und einen Bildwandler. Die MCP ist in einer Flugbahn einer ionisierten Probe vorgesehen, die eine Komponente einer ionisierten Probe ist, und emittiert Elektronen in Übereinstimmung mit der ionisierten Probe. Der fluoreszierende Körper ist stromabwärts von der MCP angeordnet und emittiert Fluoreszenzlicht in Übereinstimmung mit den von der MCP emittierten Elektronen. Der Bildwandler ist stromabwärts des fluoreszierenden Körpers angeordnet und verfügt über einen Verschlussmechanismus, der so konfiguriert ist, dass er in der Lage ist, einen offenen Zustand, in dem das fluoreszierende Licht abgebildet wird, indem er das fluoreszierende Licht aus dem fluoreszierenden Körper durchlässt, und einen geschlossenen Zustand, in dem das fluoreszierende Licht nicht abgebildet wird, indem er das fluoreszierende Licht aus dem fluoreszierenden Körper blockiert, umzuschalten. Die Nachleuchtzeit des Leuchtstoffkörpers beträgt 12 ns oder weniger.
Abstract:
Ein Massenspektrometer umfasst einen Probentisch, eine Bestrahlungsvorrichtung, eine MCP, einen fluoreszierenden Körper, einen Bildwandler und eine Steuereinheit. Die Bestrahlungsvorrichtung bestrahlt eine Probe mit einem Energiestrahl, um eine Vielzahl von Komponenten der Probe zu ionisieren, während die Positionsinformation der Vielzahl von Komponenten erhalten bleibt. Die MCP emittiert Elektronen in Übereinstimmung mit einer ionisierten Probe. Der fluoreszierende Körper emittiert Fluoreszenzlicht in Übereinstimmung mit den Elektronen. Der Bildwandler verfügt über einen Verschlussmechanismus, der so konfiguriert ist, dass er zwischen einem offenen und einem geschlossenen Zustand umschalten kann. Die Steuereinheit steuert den Öffnungs- und Schließvorgang des Verschlussmechanismus. Die Steuereinheit ermöglicht es dem Bildwandler, das Fluoreszenzlicht entsprechend jeder der mehreren Komponenten abzubilden, indem das Öffnen und Schließen des Verschlussmechanismus zu einem Zeitpunkt für jede der Komponenten durchgeführt wird.
Abstract:
PROBLEM TO BE SOLVED: To provide an image intensifier in which output resolution can be improved even to strong spot light. SOLUTION: In an optical fiber plate 4 to be used in an image intensifier, an incidental surface of a core part 42 is engraved to a clad part 43 to form a recess 44, and phosphor 45 is filled in a bottom of the recess 44. A metal back layer 46 is formed on the surface of the phosphor 45. The clad part 43 is protruded in a incidental surface direction from the surface of the phosphor 45. A metal film 47 is formed on the surface of a protruded part of the clad part 43. Electrons reflected by the metal back layer 46 and the metal film 47 are thus shielded by a protruded wall surface of the clad part 43, thereby they get into the metal back layer 46 again to reduce collision quantity to the phosphor 45 to restrict halo phenomenon.
Abstract:
PROBLEM TO BE SOLVED: To provide a luminous body with high speed of response and luminescence intensity, and to provide an electron beam detector, scanning electron microscope and mass spectroscope using the same. SOLUTION: This invention relates to the luminous body 10 comprising a nitride semiconductor layer 14 formed on a face 12a of a substrate 12 which emits fluorescence by incident electron and at least a part of the fluorescence penetrates through the substrate 12 and emits the fluorescence from the other face of the substrate. The speed of response of the fluorescence is in the order of ≤μ sec. The luminescence intensity of the fluorescence is comparable to that of a conventional P47 luminous body. In other words, the luminous body 10 has sufficient speed of response and luminescence intensity for application to the scanning electron microscope and mass spectroscope. The luminous body 10 is not only excellent in high speed of response and luminescence intensity but also in residual ratio of fluorescence because a cap layer 16 contributes to the improvement of residual ratio of the fluorescence in the nitride semiconductor layer 14. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide an illuminator having a high speed of response and a high emission intensity, and to provide an electron beam detector, a scanning electron microscope and a mass spectrometer which use the same. SOLUTION: When a nitride semi-conductor layer 14 formed on one side 12a of a substrate 12 is subjected to the incidence of electrons to emit fluorescent light in the illuminant 10, the fluorescent light outgoes from the other side of the substrate 12. The emission of the fluorescent light is caused by the incidence of the electrons into the quantum well structure of the nitride semi-conductor layer 14 and by the rebinding of the produced electrons to the positive hole pairs, and the speed of response is an order of μsec or higher. The emission intensity of the fluorescent light is obtained in the same extent as that of conventional P47 fluorescent substance. Namely, the illuminant 10 has a speed of response and an emission intensity enough for application to scanning electron microscopes and mass spectrometers. COPYRIGHT: (C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide an inexpensive infrared visible conversion member and an infrared detection device having sufficiently high visible light generation intensity and resolution when converting an infrared ray into visible light. SOLUTION: This infrared visible conversion member 2a arranged on the light receiving surface of a photodetector 1 having sensitivity to visible light is characterized by adjusting a phosphor layer 3 including an up-conversion phosphor for converting the infrared ray into visible light so as to have the film thickness of 5-120 μm. Hereby, the visible light generation intensity and the resolution can be compatible with each other at a high level, and an image by visible light converted from the infrared ray is detected by the photodetector 1 with high sensitivity and high resolution, to thereby enable to realize an excellent infrared detection element.