Abstract:
Systems and methods for measuring dynamic hydraulic conductivity and permeability associated with a cell layer are disclosed. Some systems include a microfluidic device, one or more working-fluid reservoirs, and one or more fluid-resistance element. The microfluidic device includes a first microchannel, a second microchannel, and a barrier therebetween. The barrier includes a cell layer adhered thereto. The working fluids are delivered to the microfluidic device. The fluid-resistance elements are coupled to one or more of the fluid paths and provide fluidic resistance to cause a pressure drop across the fluid-resistance elements. Mass transfer occurs between the first microchannel and the second microchannel, which is indicative of the hydraulic conductivity and/or dynamic permeability associated with the cells.
Abstract:
Systems and methods interconnect cell culture devices and/or fluidic devices by transferring discrete volumes of fluid between devices. A liquid-handling system collects a volume of fluid from at least one source device and deposits the fluid into at least one destination device. In some embodiments, a liquid-handling robot actuates the movement and operation of a fluid collection device in an automated manner to transfer the fluid between the at least one source device and the at least one destination device. In some cases, the at least one source device and the at least one destination device are cell culture devices. The at least one source device and the at least one destination device may be microfluidic or non-microfluidic devices. In some cases, the cell culture devices may be microfluidic cell culture devices. In further cases, the microfluidic cell culture devices may include organ-chips.
Abstract:
Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
Abstract:
An incubator assembly includes an incubator enclosure having an internal chamber in which a controlled environment is maintained and which is defined by one or more walls. The incubator assembly further includes a jacket assembly mounted adjacent to at least one of the walls and having an internal airspace in which an internal fluid is enclosed for maintaining a homogenous temperature within the internal chamber. The jacket assembly further has a vent movable between a plurality of positions including an open position in which the internal fluid is allowed to exit the internal airspace into an ambient environment.
Abstract:
An interconnect adaptor for connecting a microfluidic device to a fluidic system. The interconnect adapter includes a base substrate and a nozzle array. The base substrate includes a first side and a second side. The nozzle array includes two or more nozzles extending away from the base substrate. Each nozzle includes an opening with a channel extending therefrom. The channels are configured to transport fluid between the microfluidic device and the fluidic system. Each of the nozzles is configured to be inserted into a respective hole in the microfluidic device. In some embodiments, the insertion forms a radially sealed connection between each nozzle and respective hole when the nozzles are inserted a predetermined distance into the respective holes.
Abstract:
Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
Abstract:
An incubator assembly includes an incubator enclosure having an internal chamber in which a controlled environment is maintained and which is defined by one or more walls. The incubator assembly further includes a jacket assembly mounted adjacent to at least one of the walls and having an internal airspace in which an internal fluid is enclosed for maintaining a homogenous temperature within the internal chamber. The jacket assembly further has a vent movable between a plurality of positions including an open position in which the internal fluid is allowed to exit the internal airspace into an ambient environment.
Abstract:
Described herein are fluid-flow control devices for transferring a fluid from a place to another and/or controlling a fluid flow. In some embodiments, fluid-flow control devices described herein can be used as pumping devices to transfer a fluid by peristaltic motion and/or as valve devices to control fluid flow for various applications, e.g., in a microfluidic platform.
Abstract:
According to aspects of the present invention, a cartridge assembly for transporting fluid into or out of one or more fluidic devices includes a first layer and a second layer. The first layer includes a first surface. The first surface includes at least one partial channel disposed thereon. The second layer abuts the first surface, thereby forming a channel from the at least one partial channel. At least one of the first layer and the second layer is a resilient layer formed from a pliable material. At least one of the first layer and the second layer includes a via hole. The via hole is aligned with the channel to pass fluid thereto. The via hole is configured to pass fluid through the first layer or the second layer substantially perpendicularly to the channel. Embossments are also used to define aspects of a fluidic channel.