Abstract:
A method and apparatus for substantially canceling the effects of temperature on the electrical performance of Field Effect Transistor (FET) integrated circuits (IC's) by exploiting a subtle feature of an epitaxial resistor implemented in an FET process. Specifically, the invention takes advantage of two constituent epitaxial resistor components having resistances that vary monotonically in opposite directions as functions of temperature. The invention includes a method for selecting the geometry of such an epitaxial resistor to give it either temperature invariance or a specific, useful functional temperature dependence.
Abstract:
A focal plane array for millimeter wave imaging comprising a three dimensional stack of antenna elements and radiometer microwave monolithic integrated circuits (MMICs) embedded in polymer dielectric layers built on top of a silicon substrate. Each radiometer MMIC and antenna element comprise a radiometer pixel. The silicon substrate contains integrated circuits to collect and process the signals from each radiometer pixel and generate a full-frame video signal. The array can be fabricated on a single silicon wafer or can be constructed from structures fabricated on multiple silicon wafers.
Abstract:
A method for fabricating high performance vertical and horizontal electrical connections in a three dimensional semiconductor structure. A dielectric film is imprinted with a stamp pattern at high vacuum and with precise temperature and stamping pressure control. The stamp pattern may be formed on a substrate using semiconductor fabrication techniques. After the dielectric film is stamped, residual dielectric film is removed to allow access to an underlying layer. Via and trench regions formed within the dielectric film by stamping are then metalized to provide the high performance interconnections. Multiple layers of interconnections in the three dimensional structure are provided by stacking layers of stamped and metalized dielectric films on top of each other.
Abstract:
A method and apparatus of substantially canceling the effects of temperature on the electrical performance of Field Effect Transistor (FET) integrated circuits (IC's) by exploiting a subtle feature of an epitaxial resistor implemented in an FET process. Specifically, the invention takes advantage of two constituent epitaxial resistor components having resistances that vary monotonically in opposite directions as functions of temperature. The essential components include: a plurality of ohmic contacts (100), and an isolated semi-conductor channel (102) residing in a layered semiconductor. The resistance of the epitaxial resistor R of the invention is comprised of an aggregate of resistances (FIG. 1c). The invention includes a method for selecting the geometry of such an epitaxial resistor to give it either temperature invariance or a specific, useful functional temperature dependence.