Abstract:
A pulsed readout technique is described for liquid crystal light valves which eliminates the problem of readout beam leakage through the light valve mirror. The readout beam is pulsed on only when the light valve's semiconductor layer is out of a depletion state. This can occur during an accumulation state or, in certain applications, during a specially inserted quiescent period in the light valve voltage cycle. The invention is applicable to light valves with various types of modulating inputs, and can be used with either dielectric or metal matrix mirrors.
Abstract:
A semiconductive substrate (1), such as a silicon wafer, is mounted on a baseplate (3), for inclusion in an optical device such as a liquid crystal light valve. An optical flat (9) presses the top surface of the silicon wafer toward the baseplate and against a ring seal (5) surrounding a fluid adhesive (7). The fluid adhesive hydrostatically distributes the force of compression to guarantee optical flatness and self-compensation for the amount fluid adhesive surrounded by the O-ring. The optical flatness of the semiconductor substrate is limited only by the flatness of the optical flat against which it is compressed. Parallel alignment of the optical flat (9), the substrate (1) and the baseplate (3) is achieved by reflecting a laser beam (20) through the semiconductive substrate and observing the interference fringes therein, while adjusting the relative alignment so as to maximize the distance between fringes.
Abstract:
An optical light valve system (10) for providing an amplified phase conjugated replica (S1*) of a potentially low intensity phase aberrated optical signal beam (S1) is disclosed herein. The optical light valve system (10) of the present invention includes a reference beam source (17) for providing a coherent reference beam (R) having first and second components of first and second polarization states, respectively. Further included is a signal beam source (15) for providing a coherent signal beam (S) of the first polarization state. An improved optical light valve (20) phase conjugates the second component of the reference beam in response to the aberrated beam (S1*).
Abstract:
An LCLV is formed with a sapphire substrate (20) base, a highly doped, thin silicon epitaxial layer (2) forming an ohmic back contact on a smooth surface of the sapphire substrate, and a lightly doped, high resistivity silicon epitaxial layer (4) in the range of about 20-60 microns thick on the back contact. The use of a sapphire substrate provides a better surface quality and higher resolution than previously available with the semiconductor substrates. Lattice defects in the thin back contact are reduced by the formation of a buried amorphous layer adjacent the sapphire substrate, and subsequent recrystallization thereof using the unamorphized portions of the back contact as recrystallization seeds. The application of the invention to both MOS and Schottky diode LCLVs is discussed.
Abstract:
Various optical modulation systems and methods which are based upon modulating the refractive index of a nipi structure. The refractive index modulation is accomplished by applying a controlled voltage differential across the n-doped and p-doped layers of the structure. Staggered contacts to the layers are formed by conductive elements which extend through the structure. One of the elements establishes ohmic contacts with the n layers, and the other with the players. When implemented as an optical spatial phase modulator, one of the nipi contacts is provided as a grid which divides the structure into a matrix of pixel elements, with the other contact comprising separate wires extending through each pixel. A spatial voltage pattern is applied to the pixel wires to inject charge into their corresponding layers, and thereby modulate the refractive indices of the pixels. This imposes a desired spatial phase modulation onto a readout beam transmitted through the nipi structure. Various guided wave applications are also disclosed in which a beam is transmitted through a nipi structure parallel to the n and p layers. The nipi structure is not divided into pixels, but rather has a common voltage differential between its n and p layers. The structure's refractive index is spatially modulated by varying this voltage differential, whereby the spatial voltage modulation is transferred onto the beam.
Abstract:
A near bandgap radiation modulation spatial light modulator (NBRM-SLM) using multiple quantum wells (MQWs) (34). Generally, the MQW NBRM SLM of the present invention comprises a MQW optical modulator (34) and driver means for driving the MQW optical modulator. The MQW NBRM SLMs of the present invention can be configured in a plurality of configurations. The driver and MQW optical modulator may be configured in hybrid or monolithic configurations. The MQW optical modulator can be operated in either transverse or longitudinal electric field modes. The MQW NBRM SLM structures can be operated using either electroabsorption or electrorefraction effects, and in transmissive or reflective modes. The structures are operable with different addressing and write-in mechanisms, including photo-activation and electronic addressing. Alternate embodiments have special features such as cascaded heterojunction MQWs and pixelized submicron metal mirror. The disclosed invention provides an improved, high speed, high resolution, semiconductor drive-compatible, spatial light modulator using multiple quantum wells.
Abstract:
A double Schottky diode light valve (5) includes a liquid crystal (80) for locally modulating a beam (120) by polarization rotation to produce a modulated beam (121), and a photoconductor (40) located adjacent the liquid crystal (80) for receiving and absorbing a second beam (110). The photoconductor (40) controls the polarization responsively to the optical content of the second beam (110). The photoconductor (40) includes a semiconductor substrate and a pair of Schottky diodes (60/40, 30/40) disposed on opposing sides of the substrate. The absorption of the second beam (110) by the substrate (40) produces photogenerated majority carriers. The pair of Schottky diodes (60/40, 30/40) maintains the substrate (40) substantially depleted of such carriers and also reflects the modulated beam back through the liquid crystal.
Abstract:
A single-Schottky liquid crystal is disclosed in which a series of Schottky contacts are made on one side of a photoconductor substrate by a metal matrix mirror, with a doped semiconductor back contact electrode on the other side of the substrate. The light valve offers several operational advantages over MOS devices, and is easier to fabricate than double-Schottky light valves. It can be operated either in an AC mode or, by doping the liquid crystal ions, in a DC mode.
Abstract:
Technique d'affichage pulsé pour valves de lumière à cristaux liquides, permettant d'éliminer le problème des fuites du faisceau d'affichage à travers le miroir de la valve de lumière. Le faisceau d'affichage est pulsé uniquement lorsque la couche semi-conductrice de la valve de lumière ne se trouve pas dans un état d'appauvrissement, ce qui se produit pendant un état d'accumulation ou, dans certaines applications, pendant une période de quiescence introduite spécialement dans le cycle de tension de la valve de lumière. L'invention s'applique à des valves de lumière présentant différents types d'entrées de modulation, et peut être utilisée avec des miroirs à matrice soit diélectrique soit métallique.
Abstract:
L'invention concerne un système à valve de lumière optique (10) permettant d'obtenir une réplique conjuguée à phase amplifiée (S1*) d'un faisceau de signaux optiques d'aberration de phase de faible intensité (S1). Le système à valve de lumière optique (10) de la présente invention comprend une source de rayon de référence (17) produisant un rayon de référence cohérent (R) ayant des première et seconde composantes de premier et second états de polarisation, respectivement. Une source de faisceaux de signaux (15) est également prévue pour produire un faisceau de signaux cohérents (S) du premier état de polarisation. Une vanne de lumière optique améliorée (20) conjugue en phase la seconde composante du faisceau de référence en réponse au faisceau d'aberration (S1*).