Abstract:
PROBLEM TO BE SOLVED: To provide an underlayer composition compatible with a typical photoresist and having optical properties to be used as an ARC (antireflection coating). SOLUTION: The composition suitable for use as a planarizing underlayer in a multilayer lithographic process is disclosed. The composition comprises a polymer containing a heterocyclic aromatic moiety. In another aspect, the composition further comprises an acid generator. In yet another aspect, the composition further comprises a crosslinker. The composition provides a planarizing underlayer having outstanding optical properties, mechanical properties, and etching selectivity properties. The present invention also encompasses a lithographic structure containing the underlayer prepared from the above composition, a method of making the lithographic structure, and a method of using the lithographic structure to pattern an underlying material layer on a substrate. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
Fluorine-free photoacid generators and photoresist compositions containing fluorine-free photoacid generators are enabled as alternatives to PFOS/PFAS photoacid generator-containing photoresists. The photoacid generators are characterized by the presence of a fluorine-free aromatic sulfonate anionic component having one or more electron withdrawing groups. The photoacid generators preferably contain a fluorine-free onium cationic component, more preferably a sulfonium cationic component. The photoresist compositions preferably contain an acid sensitive imaging polymer having a lactone functionality. The compositions are especially useful for forming material patterns using 193nm (ArF) imaging radiation.
Abstract:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
Abstract:
Embodiments include a silicon-containing antireflective material including a silicon- containing base polymer, a non-polymeric silsesquioxane material, and a photoacid generator. The silicon-containing base polymer may contain chromophore moieties, transparent moieties, and reactive sites on an SiOx background, where x ranges from approximately 1 to approximately 2. Exemplary non-polymeric silsesquioxane materials include polyhedral oligomeric silsesquioxanes having acid labile side groups linked to hydrophilic groups Exemplary acid labile side groups may include tertiary alkyl carbonates, tertiary alkyl esters, tertiary alkyl ethers, acetals and ketals, Exemplary hydrophilic groups may include phenols, alcohols, carboxylic acids, amides, and sulfonamides. Embodiments further include lithographic structures including an organic anti-reflective layer, the above-described silicon-containing anti-reflective layer above the organic anti-reflective layer, and a photoresist layer above the above-described silicon-containing anti-reflective layer. Embodiments further include a method of forming a lithographic structure utilizing the above-described silicon-containing anti- reflective layer.