Abstract:
A method of enhancing the rate of transistor gate corner oxidation, without significantly increasing the thermal budget of the overall processing scheme is provided. Specifically, the method of the present invention includes implanting ions into gate corners of a Si-containing transistor, and exposing the transistor including implanted transistor gate corners to an oxidizing ambient. The ions employed in the implant step include Si; non-retarding oxidation ions such as O, Ge, As, B, P, In, Sb, Ga, F, C1, He, Ar, Kr, and Xe; and mixtures thereof.
Abstract:
A method of enhancing the rate of transistor gate corner oxidation, without significantly increasing the thermal budget of the overall processing scheme is provided. Specifically, the method of the present invention includes implanting ions into gate corners (20) of a Si-containing transistor having a gate conductor (16) and a dielectric cap (18), and exposing the transistor including implanted transistor gate corners (20) to an oxidizing ambient. The ions employed in the implant step include Si, non-retarding oxidation ions such as O, Ge, As, B, P, In, Sb, Ga, F, C1, He, Ar, Kr, and Xe; and mixtures thereof.
Abstract:
A method of enhancing the rate of transistor gate corner oxidation, without significantly increasing the thermal budget of the overall processing scheme is provided. Specifically, the method of the present invention includes implanting ions into gate corners of a Si-containing transistor, and exposing the transistor including implanted transistor gate corners to an oxidizing ambient. The ions employed in the implant step include Si; non-retarding oxidation ions such as O, Ge, As, B, P, In, Sb, Ga, F, Cl, He, Ar, Kr, and Xe; and mixtures thereof.