Abstract:
Alloying the base electrode of a lead-oxide-lead Josephson tunnel junction with indium will effectively result in an oxide having a low barrier height. Consequently, much thicker barriers can be produced without severely limiting the magnitude of the tunnel current. Furthermore, by varying the indium concentration in an array of Pb-In electrodes on a single chip, one can produce various different functioning devices while employing only a single oxidation process.
Abstract:
Superconductive circuitry using a first Josephson tunneling device connected to a transmission line having a termination such that no reflections result when the Josephson tunneling diode switches between two stable voltage states, in accordance with applied input signals. Means are provided for producing the input signals to switch the first Josephson tunneling device and further Josephson tunneling devices are provided whose voltage state depends on the current pulse delivered to the transmission line when the first Josephson tunneling device switches from a first voltage state to a second voltage state. Logic circuitry is shown using this structure, as well as fan-in and fan-out Josephson tunneling device circuits.