Abstract:
A system and method for considerable reduction of power consumption in memory circuits implementing Vbb (array body bias) and Vwl (negative word line) voltage generators. The system comprises switching off the negative WL generator during sleep or standby mode, so that no power is consumed. A relaxed refresh operation is carried out and the negative WL is powered by the Vbb generator. The noise coupled to the negative WL supply from BL swing is reduced due to the joint Vbb-Vwl decoupling scheme. In the active mode, the Vbb and Vneg are separated to avoid any cross-over noise and to maintain design flexibility. During power-on period, the ramp-up rate of Vbb level is improved by the Vwl generator. The advantages may be summarized as: (1) simpler Vbb generator design, (2) much smaller Vbb generator size, (3) reduced Vbb power, (4) no stand-by current from Vwl generator, (5) low decoupling noise for Vwl level during stand-by or sleep mode, (6) enhanced ramp-up rate for Vbb during power-on, (7) no cross-over noise between Vbb and Vwl during active mode, and (8) design flexibility of Vbb and Vwl in the active mode. The principles and advantages of the invention may be applied to any two or more DC generator systems, negative or positive.
Abstract:
A system and method for considerable reduction of power consumption in memory circuits implementing Vbb (array body bias) and Vwl (negative word line) voltage generators. The system comprises switching off the negative WL generator during sleep or standby mode, so that no power is consumed. A relaxed refresh operation is carried out and the negative WL is powered by the Vbb generator. The noise coupled to the negative WL supply from BL swing is reduced due to the joint Vbb-Vwl decoupling scheme. In the active mode, the Vbb and Vneg are separated to avoid any cross-over noise and to maintain design flexibility. During power-on period, the ramp-up rate of Vbb level is improved by the Vwl generator. The advantages may be summarized as: (1) simpler Vbb generator design, (2) much smaller Vbb generator size, (3) reduced Vbb power, (4) no stand-by current from Vwl generator, (5) low decoupling noise for Vwl level during stand-by or sleep mode, (6) enhanced ramp-up rate for Vbb during power-on, (7) no cross-over noise between Vbb and Vwl during active mode, and (8) design flexibility of Vbb and Vwl in the active mode. The principles and advantages of the invention may be applied to any two or more DC generator systems, negative or positive.
Abstract:
A system and method for considerable reduction of power consumption in memory circuits implementing Vbb (array body bias) and Vwl (negative word line) voltage generators. The system comprises switching off the negative WL generator during sleep or standby mode, so that no power is consumed. A relaxed refresh operation is carried out and the negative WL is powered by the Vbb generator. The noise coupled to the negative WL supply from BL swing is reduced due to the joint Vbb-Vwl decoupling scheme. In the active mode, the Vbb and Vneg are separated to avoid any cross-over noise and to maintain design flexibility. During power-on period, the ramp-up rate of Vbb level is improved by the Vwl generator. The advantages may be summarized as: (1) simpler Vbb generator design, (2) much smaller Vbb generator size, (3) reduced Vbb power, (4) no stand-by current from Vwl generator, (5) low decoupling noise for Vwl level during stand-by or sleep mode, (6) enhanced ramp-up rate for Vbb during power-on, (7) no cross-over noise between Vbb and Vwl during active mode, and (8) design flexibility of Vbb and Vwl in the active mode. The principles and advantages of the invention may be applied to any two or more DC generator systems, negative or positive.
Abstract:
A system and method for considerable reduction of power consumption in memory circuits implementing Vbb (array body bias) and Vwl (negative word line) voltage generators. The system comprises switching off the negative WL generator during sleep or standby mode, so that no power is consumed. A relaxed refresh operation is carried out and the negative WL is powered by the Vbb generator. The noise coupled to the negative WL supply from BL swing is reduced due to the joint Vbb-Vwl decoupling scheme. In the active mode, the Vbb and Vneg are separated to avoid any cross-over noise and to maintain design flexibility. During power-on period, the ramp-up rate of Vbb level is improved by the Vwl generator. The advantages may be summarized as: (1) simpler Vbb generator design, (2) much smaller Vbb generator size, (3) reduced Vbb power, (4) no stand-by current from Vwl generator, (5) low decoupling noise for Vwl level during stand-by or sleep mode, (6) enhanced ramp-up rate for Vbb during power-on, (7) no cross-over noise between Vbb and Vwl during active mode, and (8) design flexibility of Vbb and Vwl in the active mode. The principles and advantages of the invention may be applied to any two or more DC generator systems, negative or positive.