Abstract:
A multilayer ceramic substrate in which an outer metal pad is anchored to the substrate by a single metal-filled via in the first ceramic layer adjacent to the metal pad. In turn, this single metal-filled via is anchored to the substrate by a larger, single metal-filled, via in the next ceramic layer adjacent to the first ceramic layer. Preferably, the metal filled vies and metal pad are 100 volume percent metal.
Abstract:
A surface mounted electronic interconnect device. The device includes a coaxial electrical pad comprising a plurality of conductive surfaces on a substrate corresponding to the conductor arrangement of a coaxial connector; and, a coaxial connector comprising a dielectric material having a center opening and isolated electrically conductive interior and exterior surfaces that are planar with the ends of the connector. The dielectric separates the inner conductive surface from the outer conductive surface and is tubularly shaped having an inner wall for the electrically conductive interior surface. The coaxial connector inner and outer conductors may alternatively be comprised of microsprings. The coaxial connector has first and second ends, the first end for attachment to an electronic package and the second end for pluggable attachment to a PC board. A socket for mating with the coaxial connector second end is demonstrated, comprising a body and inner and outer conductors and configured so as to contact the interior and exterior surfaces of the coaxial connector at different times. The inner conductor of the socket is adapted to be received within the electrically conductive interior surface of the coaxial connector.
Abstract:
A surface mounted electronic interconnect device. The device includes a coaxial electrical pad comprising a plurality of conductive surfaces on a substrate corresponding to the conductor arrangement of a coaxial connector; and, a coaxial connector comprising a dielectric material having a center opening and isolated electrically conductive interior and exterior surfaces that are planar with the ends of the connector. The dielectric separates the inner conductive surface from the outer conductive surface and is tubularly shaped having an inner wall for the electrically conductive interior surface. The coaxial connector inner and outer conductors may alternatively be comprised of microsprings. The coaxial connector has first and second ends, the first end for attachment to an electronic package and the second end for pluggable attachment to a PC board. A socket for mating with the coaxial connector second end is demonstrated, comprising a body and inner and outer conductors and configured so as to contact the interior and exterior surfaces of the coaxial connector at different times. The inner conductor of the socket is adapted to be received within the electrically conductive interior surface of the coaxial connector.