Apparatus for processing music as data
    1.
    发明授权
    Apparatus for processing music as data 失效
    用于处理音乐作为数据的装置

    公开(公告)号:US3926088A

    公开(公告)日:1975-12-16

    申请号:US43045874

    申请日:1974-01-02

    Applicant: IBM

    CPC classification number: G10H1/0041 G09B15/04 G10H1/0058 G10H2210/086

    Abstract: A musical instrument such as an organ with a keyboard is attached to a data processing system. The interface between the instrument and the computer includes means for converting electrical signals produced by depressing the keys on the instrument to data in a format suitable for processing. The musical instrument is provided with a mechanism such as a foot pedal which can be actuated by the artist to provide rhythm timing to the computer. The data processing system includes means for translating the data received from the musical instrument into a format suitable for printing, displaying or storing the data in musical notation.

    Abstract translation: 诸如具有键盘的器官的乐器被附接到数据处理系统。 仪器和计算机之间的接口包括用于将通过按下仪器上的键而产生的电信号转换为适于处理的格式的数据的装置。 该乐器设置有诸如脚踏板的机构,其可由艺术家致动以向计算机提供节奏定时。 数据处理系统包括用于将从乐器接收的数据转换成适合于以音乐符号打印,显示或存储数据的格式的装置。

    SERVICING INTERRUPT REQUESTS IN A DATA PROCESSING SYSTEM WITHOUT USING THE SERVICES OF AN OPERATING SYSTEM

    公开(公告)号:CA2009529C

    公开(公告)日:1994-07-12

    申请号:CA2009529

    申请日:1990-02-07

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g., S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated from 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors access the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    4.
    发明专利
    未知

    公开(公告)号:BR9002297A

    公开(公告)日:1991-08-06

    申请号:BR9002297

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    SINGLE PHYSICAL MAIN STORAGE SHARED BY TWO OR MORE PROCESSORS EXECUTING RESPECTIVE OPERATING SYSTEMS

    公开(公告)号:CA2009548C

    公开(公告)日:1996-07-02

    申请号:CA2009548

    申请日:1990-02-07

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g., S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated from 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors access the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/37C peer processor pairs execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    7.
    发明专利
    未知

    公开(公告)号:BR9002296A

    公开(公告)日:1991-08-13

    申请号:BR9002296

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    8.
    发明专利
    未知

    公开(公告)号:BR9002304A

    公开(公告)日:1991-08-06

    申请号:BR9002304

    申请日:1990-05-17

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    9.
    发明专利
    未知

    公开(公告)号:BR9002280A

    公开(公告)日:1991-08-06

    申请号:BR9002280

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    10.
    发明专利
    未知

    公开(公告)号:PT94055A

    公开(公告)日:1991-11-29

    申请号:PT9405590

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

Patent Agency Ranking