Abstract:
This data acquisition and control system includes many features for enhancing real time response to external or internal conditions. One feature relates to the use of multiple processor control circuits which can be switched between active and inactive status for controlling the performance of processor operations as a function of the level of priority of received interrupt service requests. Another feature pertains to I/O devices attached to the processor. These I/O devices include means for retaining data dynamically allocable by the processor program for specifying assigned interrupt levels and/or for identifying the requisite servicing subroutine in the processor to permit rapid response when an interrupt service is granted. The devices monitor their own status and provide a summary bit to the processor identifying whether or not a status data interchange is required. Multiple masking allows the processor to select between masking all interrupts, interrupts from any source on one or more interrupt priority levels, interrupts from a particular device or devices, or any combination of these.
Abstract:
The functions of two virtual operating systems (e.g., S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated from 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors access the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/37C peer processor pairs execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
Abstract:
The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
Abstract:
CONSISTENTE EN UN APARATO DE COMPUTADORA CON SISTEMA OPERATIVO MULTIPLE QUE ESTA COMPRENDIDO POR UN PRIMER PROCESADOR CONTROLADO POR UN PRIMER PROGRAMA DE APLICACIONES QUE OPERA A TRAVES DE UN PRIMER SISTEMA OPERATIVO; UN SEGUNDO PROCESADOR CONTROLADO POR UN SEGUNDO PROGRAMA DE APLICACIONES QUE OPERA A TRAVES DE UN SEGUNDO SISTEMA OPERATIVO QUE OFRECE SERVICIO DE DISPOSITIVO DE RECURSO PARA EL APARATO DE LA COMPUTADORA Y UN DISPOSITIVO DE TRANSFERENCIA DE INFORMACION ACOPLADO ENTRE LOS PROCESADORES QUE PERMITE LA TRANSFERENCIA DIRECTA DE INFORMACION ENTRE EL PRIMER Y SEGUNDO PROGRAMA DE APLICACIONES SIN LA UTILIZACION DE LOS SERVICIOS DEL SEGUNDO SISTEMA OPERATIVO
Abstract:
The functions of two virtual operating systems (e.g., S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated from 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors access the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
Abstract:
MICROCODE CONTROL APPARATUS UTILIZING PROGRAMMABLE LOGIC ARRAY CIRCUITS To provide for efficient use of computer microcodes, a firmware structure containing a mainline programmable logic array circuit and at least one subroutine programmable logic array circuit may be used. As the states of the mainline programmable logic array circuit is sequenced, the data bits representing the encode number field in its OR array is compared with the data bits representing the encode number field of the AND array of the subroutine programmable logic array circuit. If a match is made, the mainline programmable logic array circuit suspends its operation and sequencing of the subroutine programmable logic array circuit begins, in order to perform the function required. Upon completion of the function, control is automatically transferred from the subroutine programmable logic array circuit back to the mainline programmable logic array circuit, at the point where it was suspended. By nesting a plurality of subroutine programmable logic array circuits, a plurality of functions, many of which may be performed simultaneously, can take place.
Abstract:
The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.