-
1.
公开(公告)号:AU2003250884A1
公开(公告)日:2004-02-23
申请号:AU2003250884
申请日:2003-06-13
Applicant: IBM
Inventor: GABILLARD BERTRAND , GIRARD PHILIPPE , RIVIER MICHEL , VOISIN FABRICE
IPC: H03F3/343
Abstract: There is disclosed an improved 2-stage large bandwidth amplifier (20) comprised of two stages formed by first and second bipolar transistors (Q1,Q2) configured in common emitter that are connected in series with their emitters connected to a first supply voltage (Gnd). The input signal (Vin) is applied to the base of said first transistor via an input terminal (11), while the output signal (Vout) is available at an output terminal (12) connected to the collector of said second transistor. A parallel feedback structure (13') is provided. It consists, in a first branch, of two diodes (D1,D2) in series connected between a second supply voltage (Vcc) and the collector of the second bipolar transistor, and in another branch of a third bipolar transistor (Q3) configured in emitter follower with a resistor (Rf) in the emitter. The base and the collector of said third bipolar transistor are respectively connected to the common node of said diodes and to said second supply voltage. The resistor is connected to the common node of said first and second transistors to inject the feedback signal (Vf). Because, the two bodies have a low internal resistance and reduce the collector capacitance of the second transistor, the overall bandwidth of the improved amplifier is significantly extended in the very high frequencies (e.g. 20 GHz and above).
-
公开(公告)号:DE60303046D1
公开(公告)日:2006-02-02
申请号:DE60303046
申请日:2003-06-13
Applicant: IBM
Inventor: GABILLARD BERTRAND , GIRARD PHILIPPE , RIVIER MICHEL , VOISIN FABRICE
IPC: H03F3/343
Abstract: There is disclosed an improved 2-stage large bandwidth amplifier (20) comprised of two stages formed by first and second bipolar transistors (Q1,Q2) configured in common emitter that are connected in series with their emitters connected to a first supply voltage (Gnd). The input signal (Vin) is applied to the base of said first transistor via an input terminal (11), while the output signal (Vout) is available at an output terminal (12) connected to the collector of said second transistor. A parallel feedback structure (13') is provided. It consists, in a first branch, of two diodes (D1,D2) in series connected between a second supply voltage (Vcc) and the collector of the second bipolar transistor, and in another branch of a third bipolar transistor (Q3) configured in emitter follower with a resistor (Rf) in the emitter. The base and the collector of said third bipolar transistor are respectively connected to the common node of said diodes and to said second supply voltage. The resistor is connected to the common node of said first and second transistors to inject the feedback signal (Vf). Because, the two bodies have a low internal resistance and reduce the collector capacitance of the second transistor, the overall bandwidth of the improved amplifier is significantly extended in the very high frequencies (e.g. 20 GHz and above).
-
公开(公告)号:DE60303046T2
公开(公告)日:2006-07-27
申请号:DE60303046
申请日:2003-06-13
Applicant: IBM
Inventor: GABILLARD BERTRAND , GIRARD PHILIPPE , RIVIER MICHEL , VOISIN FABRICE
IPC: H03F3/343
Abstract: There is disclosed an improved 2-stage large bandwidth amplifier (20) comprised of two stages formed by first and second bipolar transistors (Q1,Q2) configured in common emitter that are connected in series with their emitters connected to a first supply voltage (Gnd). The input signal (Vin) is applied to the base of said first transistor via an input terminal (11), while the output signal (Vout) is available at an output terminal (12) connected to the collector of said second transistor. A parallel feedback structure (13') is provided. It consists, in a first branch, of two diodes (D1,D2) in series connected between a second supply voltage (Vcc) and the collector of the second bipolar transistor, and in another branch of a third bipolar transistor (Q3) configured in emitter follower with a resistor (Rf) in the emitter. The base and the collector of said third bipolar transistor are respectively connected to the common node of said diodes and to said second supply voltage. The resistor is connected to the common node of said first and second transistors to inject the feedback signal (Vf). Because, the two bodies have a low internal resistance and reduce the collector capacitance of the second transistor, the overall bandwidth of the improved amplifier is significantly extended in the very high frequencies (e.g. 20 GHz and above).
-
公开(公告)号:AT314753T
公开(公告)日:2006-01-15
申请号:AT03766121
申请日:2003-06-13
Applicant: IBM
Inventor: GABILLARD BERTRAND , GIRARD PHILIPPE RES DE LA DAUP , RIVIER MICHEL , VOISIN FABRICE
IPC: H03F3/343
Abstract: There is disclosed an improved 2-stage large bandwidth amplifier (20) comprised of two stages formed by first and second bipolar transistors (Q1,Q2) configured in common emitter that are connected in series with their emitters connected to a first supply voltage (Gnd). The input signal (Vin) is applied to the base of said first transistor via an input terminal (11), while the output signal (Vout) is available at an output terminal (12) connected to the collector of said second transistor. A parallel feedback structure (13') is provided. It consists, in a first branch, of two diodes (D1,D2) in series connected between a second supply voltage (Vcc) and the collector of the second bipolar transistor, and in another branch of a third bipolar transistor (Q3) configured in emitter follower with a resistor (Rf) in the emitter. The base and the collector of said third bipolar transistor are respectively connected to the common node of said diodes and to said second supply voltage. The resistor is connected to the common node of said first and second transistors to inject the feedback signal (Vf). Because, the two bodies have a low internal resistance and reduce the collector capacitance of the second transistor, the overall bandwidth of the improved amplifier is significantly extended in the very high frequencies (e.g. 20 GHz and above).
-
-
-