Abstract:
Disclosed is an optical lithographic mask having one or more dummy patterns, each said dummy pattern having a masked area of said optical lithographic mask seperated from one or more feature masked areas on said optical lithographic mask by an unmasked region of width d, wherein said width d is selected to substantially minimize an average deviation between the dimensions of said feature masked areas and corresponding features etched out upon a semiconductor surface utilizing said optical lithographic mask.
Abstract:
A method of providing shallow trench (143) isolation for a semiconductor wafer (100). Trenches (113) are formed within a first semiconductor material (112) and a pad nitride (114), leaving a portion of first semiconductor material (112) and pad nitride (114) in a region between the trenches (113). A second semiconductor material (116) is deposited over the trenches (113) to fill the trenches (113) to a height below the first semiconductor material (112) top surface. A first insulator (130) is selectively formed over the second semiconductor material (116). The pad nitride (114) and a portion of the first semiconductor material (112) between the trenches (113) are removed to isolate element regions of the wafer (100) and form straps (142) having a low resistance.
Abstract:
To form a semiconductor device, an insulating layer is formed over a conductive region and a pattern transfer layer is formed over the insulating layer. The pattern transfer layer is patterned in the reverse tone of a layout of recesses to be formed in the insulating layer such that the pattern transfer layer remains over regions where the recesses are to be formed. A mask material is formed over the insulating layer and is aligned with the pattern transfer layer. Remaining portions of the pattern transfer layer are removed and recesses are etched in the insulating layer using the mask material as a mask.
Abstract:
Verfahren zum Ausbilden eines Halbleiterbauelements, wobei das Verfahren folgendes umfaßt: Ausbilden einer Siliziumelektrode (74, 78); Ausbilden einer Seitenwand-Abstandshalterstruktur (50) neben Seitenwänden der Siliziumelektrode (74, 78); Entfernen eines oberen Abschnitts (78) der Siliziumelektrode (74, 78) und Silizidieren eines restlichen Abschnitts (74) der Siliziumelektrode (74, 78); weiterhin umfassend das Reduzieren einer Höhe der Abstandshalterstruktur (50), dadurch gekennzeichnet, dass das Reduzieren der Höhe vor dem Silizidieren durchgeführt wird, und dass das Silizidieren ein vollständiges Silizidieren des restlichen Abschnitts (74) der Siliziumelektrode (74, 78) ist.
Abstract:
Verfahren zum Ausbilden einer Halbleiteranordnung mit den Schritten: Ausbilden einer Isolierschicht (16) über einem leitenden Gebiet; Ausbilden einer Siliziumschicht (40) über der Isolierschicht; Ausbilden einer Strukturübertragungsschicht (42) über der Siliziumschicht (40); Entfernen von Teilbereichen der Strukturübertragungsschicht (42) zum Freilegen von Teilbereichen der Siliziumschicht (40), wobei die verbleibenden Teilbereiche der Strukturübertragungsschicht (42) über Teilbereichen der Isolierschicht (16) liegen, in welchen Kontaktlöcher ausgebildet werden; Ändern der freiliegenden Teilbereiche (52) der Siliziumschicht (40), so dass die freiliegenden Teilbereiche (52) der Siliziumschicht (40) von nicht freiliegenden Teilbereichen der Maskierungsschicht (40) verschieden sind; Entfernen der verbleibenden Teilbereiche der Strukturübertragungsschicht (42); Entfernen von Teilbereichen der Siliziumschicht (40), die unter der Strukturübertragungsschicht (42) lagen und während des Veränderungsschrittes nicht verändert wurden, durch ein HF-Ätzen, wobei Teilbereiche der Isolierschicht (16) freigelegt sind, nachdem die nicht reagierten Teilbereiche der Siliziumschicht (40) entfernt worden sind; und Ätzen der freiliegenden Teilbereiche der Isolierschicht (16).
Abstract:
A method of making a semiconductor device for an integrated circuit chip. An interim gate electrode stack formed includes a top silicon portion patterned from a second silicon layer, a sandwiched oxide portion patterned from an etch stop oxide layer, and a bottom silicon portion patterned from a first silicon layer formed on a gate dielectric layer over a substrate. Etching the second silicon layer is stopped at the etch stop oxide layer. A spacer structure is formed about the interim gate electrode stack, and then the top silicon portion and the sandwiched oxide portion are removed. The spacer structure height may be reduced. A metal layer is formed over the bottom silicon portion of the interim gate electrode stack and over source and drain regions of the substrate, all of which are silicided at the same time to form a fully silicided (FUSI) gate electrode and silicided source and drain regions.
Abstract:
To form a semiconductor device, an insulating layer is formed over a conductive region and a pattern transfer layer is formed over the insulating layer. The pattern transfer layer is patterned in the reverse tone of a layout of recesses to be formed in the insulating layer such that the pattern transfer layer remains over regions where the recesses are to be formed. A mask material is formed over the insulating layer and is aligned with the pattern transfer layer. Remaining portions of the pattern transfer layer are removed and recesses are etched in the insulating layer using the mask material as a mask.
Abstract:
A method of making a semiconductor device for an integrated circuit chip. An interim gate electrode stack formed includes a top silicon portion patterned from a second silicon layer, a sandwiched oxide portion patterned from an etch stop oxide layer, and a bottom silicon portion patterned from a first silicon layer formed on a gate dielectric layer over a substrate. Etching the second silicon layer is stopped at the etch stop oxide layer. A spacer structure is formed about the interim gate electrode stack, and then the top silicon portion and the sandwiched oxide portion are removed. The spacer structure height may be reduced. A metal layer is formed over the bottom silicon portion of the interim gate electrode stack and over source and drain regions of the substrate, all of which are silicided at the same time to form a fully silicided (FUSI) gate electrode and silicided source and drain regions.