Abstract:
The column lines of the memory matrix are alternatively used as detector lines. The selected detector lines are, together with the relevant column line, respectively impinged upon with a precharge voltage prior to the read-out of the memory columns. If a detector line loses its precharge level during the read-out of the memory cells, an incidence of light runs out and a corresponding alarm function is triggered. Preferably, adjacent column lines are connected to the respectively selected column lines for data transmission as detector lines.
Abstract:
The invention relates to a method for controlling the charging and discharging phases of a back-up capacitor (C) on a data support, whereby the back-up capacitor (C) is firstly discharged to a particular voltage level before charging. The discharging occurs at a constant current (iD). It is thus secured that it is not possible to tell the charge state of the capacitor (C) before discharge, by means of the charging current from the back- up capacitor (C). It is thus no longer possible to draw conclusions about the currents flowing during calculation operations in a data processing unit (1), which have security implications. In an advantageous circuit arrangement, a constant current source (3) is formed by means of a current mirror circuit and the voltage of the back-up capacitor (C) compared with a band-gap reference by means of a comparator (2).
Abstract:
A method for controlling the charging and discharging phases of a backup capacitor for a data storage medium has the step where the backup capacitor is first discharged to a defined voltage level before it is charged. The capacitor is discharged using a constant current. This ensures that the charging current for the backup capacitor cannot be used to identify what the charge-state of the capacitor was before discharging. Therefore, it is no longer possible to infer the currents that flowed during security-related arithmetic operations in a data processing unit. In one advantageous circuit configuration, a constant current source is formed by a current-mirror circuit, and a comparator is used to compare the voltage on the backup capacitor with a bandgap reference.
Abstract:
EEPROM memory matrix in which column lines are alternatively used as detector lines. A precharge voltage is applied to selected detector lines together with the relevant column line in each case before read-out of the memory columns. If a detector line loses its precharge level during the read-out of the memory cells, light incidence is assumed and a corresponding alarm function is triggered. Preferably column lines adjacent to the column lines that are respectively selected for the data transmission are connected as detector lines.
Abstract:
A method for controlling the charging and discharging phases of a backup capacitor for a data storage medium has the step where the backup capacitor is first discharged to a defined voltage level before it is charged. The capacitor is discharged using a constant current. This ensures that the charging current for the backup capacitor cannot be used to identify what the charge-state of the capacitor was before discharging. Therefore, it is no longer possible to infer the currents that flowed during security-related arithmetic operations in a data processing unit. In one advantageous circuit configuration, a constant current source is formed by a current-mirror circuit, and a comparator is used to compare the voltage on the backup capacitor with a bandgap reference.
Abstract:
A method for controlling the charging and discharging phases of a backup capacitor for a data storage medium has the step where the backup capacitor is first discharged to a defined voltage level before it is charged. The capacitor is discharged using a constant current. This ensures that the charging current for the backup capacitor cannot be used to identify what the charge-state of the capacitor was before discharging. Therefore, it is no longer possible to infer the currents that flowed during security-related arithmetic operations in a data processing unit. In one advantageous circuit configuration, a constant current source is formed by a current-mirror circuit, and a comparator is used to compare the voltage on the backup capacitor with a bandgap reference.
Abstract:
EEPROM memory matrix in which column lines are alternatively used as detector lines. A precharge voltage is applied to selected detector lines together with the relevant column line in each case before read-out of the memory columns. If a detector line loses its precharge level during the read-out of the memory cells, light incidence is assumed and a corresponding alarm function is triggered. Preferably column lines adjacent to the column lines that are respectively selected for the data transmission are connected as detector lines.
Abstract:
EEPROM memory matrix in which column lines are alternatively used as detector lines. A precharge voltage is applied to selected detector lines together with the relevant column line in each case before read-out of the memory columns. If a detector line loses its precharge level during the read-out of the memory cells, light incidence is assumed and a corresponding alarm function is triggered. Preferably column lines adjacent to the column lines that are respectively selected for the data transmission are connected as detector lines.
Abstract:
A method for controlling the charging and discharging phases of a backup capacitor for a data storage medium has the step where the backup capacitor is first discharged to a defined voltage level before it is charged. The capacitor is discharged using a constant current. This ensures that the charging current for the backup capacitor cannot be used to identify what the charge-state of the capacitor was before discharging. Therefore, it is no longer possible to infer the currents that flowed during security-related arithmetic operations in a data processing unit. In one advantageous circuit configuration, a constant current source is formed by a current-mirror circuit, and a comparator is used to compare the voltage on the backup capacitor with a bandgap reference.
Abstract:
A circuit configuration for detecting a functional disturbance has a first and a second differential amplifier. The outputs of the differential amplifiers are connected to the inputs of a gate. One input of the differential amplifiers is in each case connected to a reference potential terminal. The respective other input of the first and second differential amplifiers is connected to a monitoring means, which responds in the event of a change in the supply voltage at a supply potential terminal of the circuit configuration.